Personalcam.ru

Авто Аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способ регулирования производительности центробежного насоса

Способ регулирования производительности центробежного насоса

Способ регулирования производительности центробежного насоса

Способ регулирования производительности центробежного насоса заключается в перепуске части перекачиваемой жидкости с выхода насоса на его вход через байпасную линию с регулирующей задвижкой и всасывающей задвижкой на входном трубопроводе насоса до байпасной линии. Регулирование производительности производят одновременным открытием байпасной и закрытием всасывающей задвижек и поддерживают постоянным суммарный расход перекачиваемой жидкости в байпасной и выходной линиях или номинальную мощность, потребляемую электродвигателем, вращающим насос. Изобретение направлено на экономию электроэнергии и расширение области применения. 4 ил.

Предложение относится к системам водоснабжения, перекачки жидкостей и газов.

Известен способ регулирования производительности задвижкой на напорном патрубке насоса (дросселированием), основанный на увеличении сопротивления напорной линии (Лобачев П.В. Насосы и насосные станции. Учеб. для техникумов, — 3-е изд., перераб. и доп. Москва, Стройиздат, 1990, с.106). Способ характеризуется низким КПД, особенно при существенных диапазонах регулирования.

Близким к предлагаемому является способ регулирования производительности насосов перепуском части перекачиваемой жидкости с выхода насоса на его вход через байпасную линию с регулирующей задвижкой. Указанный способ регулировки экономичен для насосов с коэффициентом быстроходности ns>300 и для вихревых насосов, у которых при увеличении подачи мощность уменьшается. В центробежных насосах с меньшим коэффициентом быстроходности регулирования подачи перепуском ведет к увеличению мощности, потребляемой насосом, и может вызвать перегрузку электродвигателя (Лобачев П.В. Насосы и насосные станции. Учеб. для техникумов, — 3-е изд., перераб. и доп. Москва, Стройиздат, 1990, с.106-109).

Наиболее близким является устройство, в котором реализуется способ регулирования производительности центробежного насоса перепуском части перекачиваемой жидкости с выхода насоса на его вход через байпасную линию с регулирующей задвижкой и всасывающей задвижкой на входном трубопроводе насоса до байпасной линии [JP 1-0176675 В (SAYAMA SEISAKUSHO КК) 30.06.1998, фиг.1, 3].

Однако известный способ регулирования не экономичен.

Задачей изобретения является расширение области применения способа регулирования перепуском для любых центробежных насосов и экономия электроэнергии при регулировании.

Технический результат достигается тем, что в способе регулирования производительности центробежного насоса перепуском части перекачиваемой жидкости с выхода насоса на его вход через байпасную линию с регулирующей задвижкой и всасывающей задвижкой на входном трубопроводе насоса до байпасной линии, согласно изобретению регулирование производительности производят одновременным открытием байпасной и закрытием всасывающей задвижек и поддерживают постоянным суммарным расход перекачиваемой жидкости в байпасной и выходной линиях или номинальную мощность, потребляемую электродвигателем, вращающим насос.

Существенными отличительными признаками заявленного технического решения являются регулирование производительности одновременным открытием байпасной и закрытием всасывающей задвижек вместо регулирования одной байпасной задвижкой в прототипе и поддержание постоянным суммарного объема перекачиваемой жидкости в байпасной и выходной линиях или номинальной мощности, потребляемой электродвигателем, вращающим насос.

Сохранение суммарного расхода перекачиваемой жидкости или номинальной мощности, потребляемой электродвигателем, вращающим насос, позволяет избежать увеличения мощности потребляемой насосом и перегрузки двигателя при регулировании. Повышение давления на входе насоса, достигаемое при одновременном открытии байпасной и закрытии всасывающей задвижек, приводит к пропорциональной экономии электроэнергии.

Предлагаемый способ регулирования производительности центробежных насосов иллюстрируют схемы фиг.1 — 4.

На фиг.1. и 3 изображены предельные варианты, а на фиг 2 — промежуточный вариант реализации предлагаемого способа регулирования. Фиг.4 поясняет предлагаемый способ регулирования с помощью характеристики Q-H насоса и характеристики Р водопроводной сети.

Устройство для реализации предлагаемого способа содержит насос 1, байпасную задвижку 2, всасывающую задвижку 3, манометры 4, 5 и 6. На фиг.4 использованы следующие обозначения: производительность (расход) Qн — номинальный, Qp — регулировочный; характеристика сети Р — номинальная и Рр -регулировочная; характеристика паспортная насоса Q-H, где Н — высота подъема перекачиваемой жидкости.

На схеме фиг.1 изображен исходный вариант, когда всасывающая задвижка 3 на входе насоса 1 полностью открыта, а байпасная задвижка 2 полностью закрыта. Насос и двигатель, его вращающий, работают в номинальном режиме. Давление на выходе насоса, измеряемое манометром 4, определяется потребителями и параллельно работающими насосами и равно 10 атмосферам. Давление на входе насоса, измеряемое манометром 5, для простоты принимаем равным 0 атм. Производительность насоса Q1=1000 м 3 /ч задаем для примера.

На схеме фиг.2 изображен промежуточный вариант регулировки, когда байпасная задвижка 2 на перепускной линии приоткрыта, а всасывающая задвижка 3 на входе насоса призакрыта. При этом часть жидкости Q1=100 м 3 /ч, которую не нужно поставлять потребителю, циркулирует по обводной линии, перенося часть энергии с выхода насоса на его вход и повышая давление на входе, измеряемое манометром 5, например на 1 атмосферу, что эквивалентно поднятию воды на входе насоса на 10 метров. При этом уменьшается разность давлений на входе и выходе насоса на 1 атмосферу и разгружается электродвигатель, приводящий в движение насос. Однако скорость жидкости на входе и внутри насоса несколько (примерно на 10%) возрастает, что приведет к снижению кавитационного запаса насоса и к ограничению диапазона регулирования. Кавитационный запас можно сохранить, если при регулировании поддерживать мощность двигателя, равной номинальной, вместо поддержания номинальным расхода.

Читайте так же:
Станки для регулировки развала и схождения

На схеме фиг.3 изображен предельный вариант регулировки, когда байпасная задвижка 2 на перепускной линии открыта полностью, а всасывающая задвижка 3 на входе насоса 1 полностью закрыта. При этом вся жидкость циркулирует по обводной линии. Давление на входе и выходе насоса равны (без учета потерь) и определяются потребителями, и параллельно работающими другими насосами.

Энергия двигателя тратится лишь на поддержание циркуляции жидкости в байпасной линии. Скорость жидкости в байпасной линии возрастает в несколько раз (например, в 5 раз), а потери в байпасной линии максимальны и пропорциональны квадрату скорости жидкости.

Если диаметр байпасного трубопровода равен диаметру напорного (выходного) трубопровода насоса, то при закрытой всасывающей задвижке и полностью открытой байпасной задвижке, скорость жидкости в байпасной линии будет максимальной и превышать скорость на выходе насоса при номинальной нагрузке, например, в 5 раз (почти как на свободный излив). Расход жидкости, перекачиваемой насосом, возрастет также в 5 раз. Если уменьшать диаметр байпасного трубопровода, а скорость жидкости считать оставшейся максимальной, то, чтобы обеспечить расход жидкости, равный номинальному, можно уменьшить диаметр байпасного трубопровода в 5 1/2 раз, то есть в 2,2 раза. Если учесть, что производительность насоса регулируют на 50% (в 2 раза), то диаметр байпасного трубопровода может быть уменьшен еще в 2 1/2 раза, то есть в 1,4 раза. Следовательно, диаметр байпасного трубопровода может быть меньше диаметра напорного примерно в 3 раза.

На практике требуется регулировка производительности насосов на 30-50%, поэтому скорость жидкости в байпасной линии и потери в ней незначительны и соизмеримы с потерями при регулировании производительности насоса за счет изменения частоты вращения насоса с помощью асинхронно-вентильных каскадов и преобразователей частоты.

Рисунок фиг.4 поясняет предлагаемый способ регулирования с помощью характеристики Q-H насоса и характеристики Р водопроводной сети. Точка расхода Qн соответствует номинальному режиму работы насоса (фиг.1). Точка расхода Qp соответствует регулировочной величине расхода (фиг.2). Поскольку суммарный расход насоса сохраняется при регулировке равным Qн, то точка 1 показывает, где должна проходить регулировочная характеристика сети Рр (выделена пунктиром). Величина Δh соответствует повышению давления на входе насоса при регулировке.

Возможность осуществления способа рассмотрим на практическом примере. Например, надо модернизировать действующую насосную станцию с насосными агрегатами мощностью 1 МВт и регулированием производительности дросселированием (Лобачев П.В. Насосы и насосные станции. Учеб. для техникумов, — 3-е изд. перераб. и доп. Москва, Стройиздат, 1990, с.106). При частичном открывании байпасной задвижки 2 (фиг.2) с целью уменьшения количества жидкости, поставляемой потребителю, дополнительно загружается насос и электродвигатель, например до 1,2 МВт, что недопустимо. Чтобы разгрузить насосный агрегат до допустимой номинальной мощности, согласно изобретению надо прикрыть всасывающую задвижку 3, одновременно контролируя расход жидкости. Если регулировка недостаточна, то вышеописанные операции надо повторить. Однако при поддержании номинальной мощности не полностью используется возможность экономии электроэнергии. Если далее прикрывать всасывающую задвижку можно получить большую экономию электроэнергии. Оптимальный результат достигается при сохранении суммарного расхода перекачиваемой жидкости в байпасной и выходной линиях.

На практике наиболее просто можно реализовать предлагаемый способ регулирования с помощью таблицы соответствия числа оборотов всасывающей задвижки числу оборотов ведущей байпасной задвижки для сохранения суммарного расхода жидкости. Можно изготовить специальную задвижку, в которой с помощью одного привода регулируются два потока жидкости.

Предлагаемый способ регулирования целесообразно применять в электроприводных насосах с мощными высоковольтными синхронными и асинхронными двигателями взамен регулирования с помощью дорогостоящих частотных преобразователей и асинхронно-вентильных каскадов.

Годовая экономия электроэнергии, например, для насоса типа Д4000-95-2, приводимого во вращение синхронным двигателем мощностью 1250 кВт, составит 1095000 кВт·ч даже при экономии в 10% (максимальная экономия электроэнергии при регулировании производительности на 30% близка к 30%).

Способ регулирования производительности центробежного насоса перепуском части перекачиваемой жидкости с выхода насоса на его вход через байпасную линию с регулирующей задвижкой и всасывающей задвижкой на входном трубопроводе насоса до байпасной линии, отличающийся тем, что регулирование производительности производят одновременным открытием байпасной и закрытием всасывающей задвижек и поддерживают постоянным суммарный расход перекачиваемой жидкости в байпасной и выходной линиях или номинальную мощность, потребляемую электродвигателем, вращающим насос.

Характеристики и регулировка производительности насосов

Рабочие характеристики

При эксплуатации судовых насосов приходится часто регулировать их производительность. Физическая сущность происходящих при этом явлений хорошо понятна и объяснима из выявления и объяснения закономерностей поведения характеристик трубопровода и различных насосов.

Характеристикой трубопровода называется зависимость между объемным расходом жидкости в единицу времени и теряемым при этом напоре в трубопроводе. Напор называется теряемым или потерянным потому, что его должен преодолеть насос для подачи жидкости к потребителю. Потери напора Нтр в трубопроводе складываются из статического Нст (геометрического) и динамического Нд (скоростного) напоров.

Статический напор для каждой системы постоянный и не зависит от изменений расхода жидкости через данный трубопровод. В координатных осях Н—Q статический напор выражается горизонтальной линией (рис. 37, а).

С изменением расхода жидкости изменяется и скорость течения ее в трубопроводе. Поэтому динамический напор изменяется и выражается графически в виде кривой Нд (рис. 37,а).

Читайте так же:
Регулировка выключателя тормоза на гранте

Графическое сложение статического и динамического напоров дает кривую Нтр, являющуюся характеристикой трубопровода. Чем более пологой будет кривая характеристики, тем меньшие потери напора будут в трубопроводе и тем меньше будет требуемый напор насоса.

Характеристикой насоса называется графическое выражение взаимосвязи двух каких-либо переменных параметров насоса при неизменном третьем. Характеристики насоса подразделяются на главные, рабочие и универсальные.

Наибольший интерес с эксплуатационной стороны представляют рабочие характеристики, которые строятся при постоянном числе оборотов насоса. На рис. 37, б приведена, в частности, рабочая характеристика центробежно-вихревого насоса ЭСН-1/1.

Регулировка производительности насосов

Для регулировки производительности насосов применяется несколько способов.

Дроссельное регулирование применяется у насосов, работающих с постоянным числом оборотов, и осуществляется прикрыванием или открыванием нагнетательного и всасывающего клапана.

Совмещение характеристики трубопровода с рабочей характеристикой насоса в одних координатных осях дает точку пересечения, называемую рабочей точкой системы. Эта

точка определяет максимальное количество жидкости, которое может быть пропущено через данный трубопровод от данного насоса. Соответственно этому определяется и необходимый напор насоса.

Допустим, что рабочая точка 1 (рис. 38, а) соответствует полностью открытому нагнетательному клапану. Этой точке соответствуют производительность Q1 и напор Н1. Для уменьшения производительности насоса прикрывается нагнетательный клапан, чтобы увеличить потери напора в трубопроводе за счет увеличения потери напора в клапане. Следовательно, противодавление насосу увеличивается. По характеристике насоса видно, что с увеличением напора производительность его уменьшается.

Характеристики насоса и трубопровода

По мере прикрытия клапана потери напора увеличиваются и характеристика трубопровода становится круче. Двум разным положениям нагнетательного клапана соответствуют при этом вспомогательные характеристики H’тр и H»тр. Точки 1′ и 1″ являются рабочими точками насоса и соответствующие им про¬изводительности Q2 И Q3 показывают измененный расход жидкости через трубопровод.

Напор жидкости в трубопроводе за нагнетательным клапаном будет меньше развиваемого насосом напора на величину потерь его в прикрытом нагнетательном клапане. Эти потери определяются участками 1—2 и 1—3.

Регулирование производительности насоса прикрытием всасывающего клапана также возможно, но не желательно из-за опасности возникновения кавитации в насосе и трубопроводе. Кавитация сопровождается гидравлическими ударами, в результате чего могут разрушаться поверхности трубопровода и деталей насоса.

Дроссельное регулирование простое и доступное, но в то же время и самое неэкономичное среди прочих способов, так как связано с большими затратами энергии на преодоление потерь напора в нагнетательном клапане. Кроме этого, при дросселировании наблюдается повышенный износ клапанов или клинкетов и ухудшается держащая способность их в закрытом состоянии. Это также является существенным недостатком дроссельного регулирования.

Дроссельное регулирование применяется обычно для центробежных насосов. Применять его для поршневых и ротационных насосов нельзя, так как характеристики этих насосов очень крутые и даже небольшие уменьшения производительности приводят к значительным резким возрастаниям напора, который может привести к повреждениям насоса и трубопровода. Вот почему в правилах обслуживания поршневых и ротационных насосов указывается, что эти насосы должны запускаться при открытом нагнетательном и всасывающем клапане.

Перепускное регулирование применяется, если имеется перепускной трубопровод, соединяющий всасывающий и нагнетательный патрубки насоса. Изменение производительности насоса в этом случае производится перепусканием части жидкости через приоткрытый перепускной клапан.

На рис. 38, б рабочая точка 1 соответствует параметрам системы при закрытом нагнетательном перепускном клапане. С открытием перепускного клапана увеличивается общее сечение для прохода жидкости, скорость ее также увеличивается, а потери напора в трубопроводе становятся меньшими. При определенном положении перепускного клапана вспомогательная характеристика трубопровода будет иметь вид Н’тр. Точка 2 определяет параметры работы насоса. Напоры насоса и трубопровода теперь равны и величина их определяется точкой 3.

Таким образом, и в этом случае регулирования наблюдаются потери энергии за счет увеличения производительности насоса сверх требуемого расхода жидкости через трубопровод.

Применяется перепускное регулирование обычно у ротационных насосов, работающих с постоянными числами оборотов, при небольших производительностях.

Регулирование производительности изменением числа оборотов применяется, когда привод насоса имеет возможность изменять число оборотов.

Рабочая точка 1 системы (рис. 39) соответствует характе¬ристике насоса при работе с полным числом оборотов. С установлением каждого нового уменьшенного числа оборотов будут новые характеристики Н»н и Н»‘н, эквидистантные друг другу, и будут новые рабочие точки 2 и 3.

Характеристики насоса и трубопровода при изменении числа оборотов

Таким образом, производительность и напор насоса изменяются совместно в одну сторону и потерь энергии, связанных с изменением производительности насоса, не наблюдается. Данный способ регулирования производительности насоса самый экономичный, и, чтобы сохранить его у насосов с электроприводами переменного тока, применяются дополнительные устройства для скоростной регулировки электродвигателей.

Неисправности центробежных насосов.

При точном соблюдении инструкции можно избежать повреждений при работе насоса. Как разнообразны условия эксплуатации насосов, так и различны неисправности, появляющиеся во время их эксплуатации.
Очень трудно дать какие-либо конкретные рекомендации для выявления и устранения всякого рода повреждений. Очень редко причина повреждения содержится в самом насосе. Поэтому насос следует разбирать лишь тогда, когда другие меры не привели к устранению неисправности.

Читайте так же:
Не могу отрегулировать фару accent

Ниже мы остановимся на некоторых основных условиях, которые следует соблюдать при эксплуатации центробежных насосов.

При неполном заполнении центробежный насос не подает жидкость или же подает ее с шумом.

Очень важно обеспечить полное заполнение насоса перед эксплуатацией. В этом случае необходимо открыть находящиеся на корпусе насоса воздуховыпускные устройства. Затем заполнить жидкостью насос и всасывающую трубу до тех пор, пока из них полностью не будет удален воздух.
Засорение всасывающего трубопровода, защитной сетки или рабочего колеса приводит к уменьшению напора. В некоторых случаях это может привести к разрыву сплошности потока на стороне всасывания насоса.
Закупоривание рабочего колеса можно предотвратить установкой во всасывающем трубопроводе защитных сеток, решеток, грубых и гравийных фильтров. Если при использовании насоса, несмотря на правильное его заполнение, не будет достигнута гарантированная подача, то вполне возможно, что не совпадает общая высота напора с параметрами насоса. Это можно проверить при помощи манометров или вакуумметров, установленных на всасывающем и напорном патрубках. Если по показаниям приборов преодолеваемая высота напора больше, чем напор насоса то необходимо увеличить, если возможно, частоту вращения или установить более крупное рабочее колесо.

Если преодолеваемая высота напора меньше, то по характеристике центробежных насосов (кроме пропеллерных) происходит увеличение подачи и мощности на валу насоса. Именно в этом случае возникает опасность перегрузки приводного двигателя.
Источник этого несоответствия можно устранить, уменьшив режим работы при помощи задвижки на напорном трубопроводе.
Особое внимание следует обращать на соответствие направления вращения вала насоса заданному. Неправильное направление вращения приводит к неисправностям насоса в результате ослабления затяжки рабочего колеса или гайки на валу, а это в свою очередь вызывает повреждение элементов корпуса насоса. Данное явление приводит также к заклиниванию вала насоса.

Недопустимые условия со стороны всасывающего патрубка часто являются причиной поломок при эксплуатации насосов.

Если превысить допустимую вакуумметрическую высоту всасывания или максимальную геометрическую высоту всасывания насоса, то это может повлечь за собой разрыв сплошности потока или по меньшей мере вызвать кавитацию, а также сильное снижение мощности. Поэтому при работе насоса необходимо следить за тем, чтобы не была превышена допустимая высота всасывания (кавитационный запас).
Максимальная высота всасывания сильно зависит от температуры перекачиваемой жидкости, от потерь на трение и изгибы трубопровода, а также от скорости (диаметра) во всасывающем трубопроводе.
Повышение температуры перекачиваемой жидкости уменьшает высоту всасывания, поскольку с увеличением температуры увеличивается давление парообразования.
Чтобы сократить потери на трение и изгибы со стороны всасывающего трубопровода, его надо делать коротким и широким, без лишних вставных элементов. Забитая приемная сетка и трудно открывающийся клапан сильно увеличивают потери энергии. В связи с тем, что потери на трение и скоростной напор зависят от скорости во всасывающем трубопроводе, в лопастных насосах диаметр всасывающего патрубка по сравнению с диаметром напорного, как правило, больше. Если нельзя обойтись без излишне длинного подающего трубопровода, то нужно увеличить его номинальный внутренний диаметр по сравнению с диаметром всасывающего патрубка.

Чтобы избежать образования воздушных мешков в насосе необходимо выполнять эксцентричный переходник.
Избыточное давление на входе, потери и скоростной напор, зависят от изменяющегося противодавления и подачи соответственно характеристике насоса. Гарантийную высоту всасывания указывают лишь для режима работы, приведенного в паспорте насоса.
Если уже на недогрузочных режимах имеет место повышение максимально допустимой высоты всасывания до определенных пределов, то при известных условиях при увеличении подачи допустимая высота будет значительно превышена. Если насос заказывают со слишком большим запасом по напору, то в эксплуатации он будет не очень надежен.
При высоком давлении парообразования или когда оно равно давлению в емкости следует предусмотреть избыточное давление на входе. Подпор должен быть больше, чем возникающие на пути до насоса потери на трение. Величина подпора зависит как от температуры перекачиваемой жидкости, так и от подачи и частоты вращения, и необходимо ее всегда выдерживать, чтобы гарантировать безупречную работу насоса. Лучше обеспечивать необходимый подпор, увеличивая давление в резервуаре путем образования воздушной подушки.
Если нельзя, по определенным причинам, обойтись без прокладки длинных труб, то необходимо уложить всасывающую линию с постоянным наклоном в сторону насоса для предотвращения образования воздушных пробок. Если это требование по каким-то причинам неосуществимо, то следует обеспечить отсос воздуха в наивысшей точке всасывающего трубопровода. Чтобы нигде не было подсоса воздуха, всасывающая труба в любом случае должна быть герметичной. Конец трубы должен быть погружен в жидкость минимум на 0,8м, чтобы недопустить возможного подсоса воздуха.
Если перекачиваемая жидкость содержит воздух или газ, то следует удалять их при помощи деаэратора или вакуумного насоса.

Напорный трубопровод в любом случае следует оснастить запирающей задвижкой (кроме полуавтоматических установок и осевых насосов), поскольку центробежные насосы включают и останавливают в основном при закрытой задвижке на напорном трубопроводе. Это запирающее устройство необходимо для регулирования подачи, а также для беспрепятственного отключения насоса от напорной магистрали во время ремонта. При напорах свыше 10,0-15,0м необходимо установить обратный клапан, который располагают между напорным патрубком и задвижкой на напорном трубопроводе. Этот клапан препятствует обратному току перекачиваемой жидкости при резкой остановке насоса и защищает всасывающий трубопровод от гидравлического удара. При поломке обратного клапана или при его отсутствии возникает опасность обратного вращения вала насоса, что может привести к тяжелым повреждениям: разрушению агрегата, отсутствию смазки, ослаблению крепления вращаяющихся и неподвижных деталей. В связи с этим надо следить за работоспособностью обратного клапана.

Читайте так же:
Шайбы для регулировки клапанов suzuki

Очень частым источником повреждений центробежных насосов является плохой уход и обслуживание сальников.

Долговечность набивки сальника зависит в основном от плавной работы насоса.
Неравномерное вращение или работа вала с биениями вызывает дополнительные нагрузки на сальниковую набивку.
Чрезмерное подтягивание крышки сальника приводит к сухому трению и выгоранию сальниковой набивки. Чтобы набивка выполняла свое уплотняющее назначение, она должна быть достаточно влажной. Капельное протекание через сальниковую набивку говорит о его нормальной работе. Долговечная работа втулки сальника снижается из-за быстрого износа при недостаточно влажной набивке и сильной затяжке сальника. При возникновении сильного нагревания может произойти выход втулки сальника из строя, если втулка и вал насоса изготовлены из материалов, имеющих различные коэффициенты линейного расширения.
Нз практике очень часто допускают ошибку, заменяя в сальнике не все уплотнительные кольца. Кольца, оставшиеся в сальниковой набивке, очень сухие и твердые, поскольку снижающие трение компоненты колец полностью выработаны. Изменение формы уплотнительных колец с помощью молотка недопустимо, так как приводит к, уменьшению упругости набивки и этим самым снижает ее работоспособность.

При эксплуатации торцовых уплотнений особенно важна спокойная работа вала насоса. Если вал работает неравномерно или с биениями, то на уплотнительных поверхностях появляются следы интенсивного изнашивания, что приводит к преждевременной потере торцовым уплотнением своих уплотнительных свойств.

Некачественное центрирование приводного двигателя и насоса вызывает усиленное изнашивание сальников и подшипников. Центробежные насосы в большинстве случаев непосредственно соединяют с приводным двигателем. Применяемые упругие муфты должны передавать только крутящий момент от привода к насосу, но не компенсировать погрешности монтажа. Поэтому необходимо устанавливать валы на одинаковой высоте и обеспечивать безупречную соосность.
Подтягивание трубопроводов к насосу, неперпендикулярность подсоединения трубопроводов к патрубкам насоса, недостаточность опоры трубопроводов при монтаже недопустимы. Вследствие чрезмерного подтягивания трубопроводов к насосному агрегату может произойти излом фланцев патрубков, разрушение муфты, работы вала с вибрацией, а все это нарушает работу концевых уплотнений.

Energy
education

Теплопроводность

Нагнетателем называется машина преобразующая механическую энергию в энергию потока жидкости. Нагнетателем подразделяются на насосы, вентиляторы и компрессоры. Насос перемещает капельные жидкости. Вентилятор газы при малых перепадах давлений до 15 КПа, а компрессор при больших перепадах давлений.

6. Регулирование насоса

Кроме того, иногда нет необходимости выбирать насос, соответствующий оптимальной рабочей точке, так как требования системы постоянно меняются или с течением времени меняется характеристика системы. Поэтому лучшим вариантом может быть регулирование параметров насоса таким образом, чтобы они обеспечивали эксплутационные потребности системы. Наиболее популярные методы изменения параметров насоса следующие:

  • Дроссельное регулирование;
  • Регулирование байпасом;
  • Изменение диаметра рабочего колеса;
  • Регулирование скорости.

Метод регулирования выбирается исходя из величины начальных инвестиций в оборудование и расходов на эксплуатацию. В течение срока службы системы можно опробовать все методы регулирования, кроме одного — коррекции диаметра рабочего колеса. Очень часто для системы используется переразмеренный насос, мощность которого намного выше требуемой, и, следовательно, необходимо ограничить его производительность — прежде всего расход, и в некоторых случаях — максимальный напор.

Дроссельное регулирование. Задвижка устанавливается последовательно после насоса, позволяя регулировать рабочую точку. Она увеличивает сопротивление системы и снижает в ней расход. Без задвижки расход будет $Q_2$. С задвижкой, установленной последовательно с насосом, расход понижается до значения $Q_1$. Задвижки могут использоваться для ограничения максимального расхода. Например, расход никогда не будет выше значения $Q_3$, даже если характеристика системы будет абсолютно пологой, что означает отсутствие в системе какого-либо сопротивления. При регулировании параметров дроссельным методом насос будет обеспечивать более высокий напор, чем необходимо для данной системы. При замене насоса с задвижкой на меньший насос, последний обеспечит желаемый расход $Q_1$, но при более низком напоре и, следовательно, с меньшим энергопотреблением.

Дроссельное регулирование.Дроссельное регулирование.

Регулирование байпасом. Задвижка байпасного (перепускного) трубопровода устанавливается параллельно с насосом и используется для регулирования его параметров. По сравнению с обычной задвижкой, устанавливаемой за насосом, байпасирование обеспечит определенный минимальный расход $Q_<бп>$ насоса, независимо от характеристик системы. Расход насоса $Q_Н$ равен сумме расхода системы $Q_С$ и расхода через байпасный трубопровод $Q_<бп>$. Задвижка на байпасе будет обеспечивать максимально допустимый напор в системе $Н_<макс>$. Даже если требуемое значение расхода в системе равно нулю, насос никогда не будет работать на закрытую задвижку. Как и в случае с дроссельным регулированием, требуемое значение расхода системы $Q_С$ может быть обеспечено меньшим насосом и без перепуска; в результате расход через насос будет ниже и, следовательно, потребление электроэнергии тоже снизится.

Читайте так же:
Windows 2003 синхронизация времени с внешним источником

Регулирование байпасом.Регулирование байпасом.

Коррекция диаметра рабочего колеса. Другим способом регулирования параметров центробежного насоса является коррекция диаметра рабочего колеса: при его уменьшении происходит снижение рабочих характеристик. Очевидно, что уменьшение диаметра рабочего колеса не может быть произведено во время работы насоса. По сравнению с дроссельным и байпасным методами регулирования, которые можно проводить во время работы насоса, коррекция диаметра рабочего колеса должна быть выполнена до монтажа насоса или во время проведения ремонтных работ.

$$frac>> = left(frac>>right)^2;$$ $$frac>> = left(frac>>right)^2;$$ $$frac>> = left(frac>>right)^4.$$

Коррекция диаметра рабочего колес.Коррекция диаметра рабочего колес.

Последний способ регулирования — регулирование скорости. Регулирование скорости с помощью преобразователя частоты, вне всяких сомнений, является наиболее эффективным способом регулирования характеристик насоса. Расход насоса $Q$ прямо пропорционален его скорости вращения $n$. Напор насоса $Н$ прямо пропорционален квадрату скорости вращения, а мощность его прямо пропорциональна кубу скорости вращения. На практике снижение скорости вращения насоса приводит к уменьшению его КПД.

Регулирование скорости вращения.Регулирование скорости вращения.


Сравнение методов регулирования.

Сравнение методов регулирования.Сравнение методов регулирования.

Регулирование по постоянному давлению. Насос должен подавать воду из резервуара в различные части здания. Требования к расходу воды в данном случае будут постоянно меняться, следовательно, и характеристика системы будет меняться в соответствии с потребным расходом. Для экономии энергии и удобства потребителя необходимо, чтобы в системе было постоянное давление. Решением в этом случае будет установка регулируемого насоса с PI-регулятором. PI-регулятор сравнивает установленное значение давления руст с фактическим значением $p_1$, измеренным с помощью датчика давления РТ. Если же фактическое давление выше, чем установленное значение, PI-регулятор снижает скорость насоса и, следовательно, его параметры, до тех пор, пока не установится равенство $p_1 = p_<уст>$. PI-регулятор изменяет скорость от значения $n_

$ до $n_

$, гарантируя при этом, что давление на выходе системы $p_1 = p_<уст>$. Такая насосная система гарантирует постоянное давление в диапазоне расхода от $0$ до $Q_<макс>$. Давление воды в точке водоразбора не зависит от ее уровня $h$ в резервуаре. Если происходит изменение уровня воды $h$, PI-регулятор изменяет скорость насоса таким образом, что давление $p_1$ всегда соответствует установленному значению.

Регулирование по постоянному давлению.Регулирование по постоянному давлению.

Регулирование по постоянной температуре. Изменение параметров системы с помощью регулирования скорости насоса используется во многих областях промышленности. На рисунке представлена система формовочной машины, которая должна непрерывно охлаждаться водой для получения продукта высокого качества. Эта машина охлаждается водой с температурой 15°С, поступающей из холодильной установки. Чтобы данная формовочная машина работала качественно и охлаждалась достаточным образом, температура в обратном трубопроводе должна поддерживаться на постоянном уровне — $t_ <обр>= 20$°С. Для этого необходимо установить регулируемый по температуре насос, управляемый с помощью PI-регулятора. PI-регулятор сравнивает установленную температуру $t_<уст>$ с фактической температурой в обратном трубопроводе $t_<обр>$, которая измеряется с помощью датчика температуры ТТ. Такая система имеет фиксированную характеристику, и, следовательно, рабочая точка насоса находится на характеристике между значениями расхода $Q_<мин>$ и $Q_<макс>$. Чем выше потери тепла в установке, тем больший расход холодной воды необходим для поддержания температуры воды в обратном трубопроводе на уровне 20°С.

Регулирование по постоянной температуре.Регулирование по постоянной температуре.

Регулирование по постоянному перепаду давления в циркуляционной системе. Регулируемые насосы широко используются в циркуляционных (закрытых) системах. Если система оснащена регулируемыми по перепаду давления циркуляционными насосами, она будет обладать определенными преимуществами. На рисунке представлена система обогрева, в которую входит теплообменник, где вода в системе нагревается и доставляется к трем потребителям (например, радиаторам) с помощью регулируемого насоса. Регулировочный вентиль соединен с каждым радиатором последовательно для регулирования расхода через радиатор в зависимости от того, какая температура необходима потребителю. Насос регулируется по постоянному перепаду давления, измеряемому на насосе. Это означает, что система обеспечивает постоянный перепад давления на насосе в Q-диапазоне от $0$ до $Q_<макс>$.

Регулирование по постоянному перепаду давления в циркуляционной системе.Регулирование по постоянному перепаду давления в циркуляционной системе.

Применение насосов со встроенным преобразователем частоты является оптимальным решением во многих производственных отраслях.

Преобразователь частоты.Преобразователь частоты.

Стоимость жизненного цикла насоса — это выражение, определяющее общую стоимость насоса на протяжении его срока службы: сколько стоит покупка, установка, работа, обслуживание, утилизация и т.д. В абсолютном большинстве случаев энергопотребление является основной составляющей стоимости жизненного цикла насосной системы, если насос работает более чем 2000 часов в год.

Стоимость жизненного цикла насоса.Стоимость жизненного цикла насоса.

Фактически около 20% от мирового потребления электроэнергии используется в насосных системах.

Фактически около 20% от мирового потребления электроэнергии используется в насосных системах.Фактически около 20% от мирового потребления электроэнергии используется в насосных системах.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2021. All rights reserved.

голоса
Рейтинг статьи

Ссылка на основную публикацию
Adblock
detector