Personalcam.ru

Авто Аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мигалки на светодиодах и транзисторных мультивибраторах (6 схем)

Мигалки на светодиодах и транзисторных мультивибраторах (6 схем)

Простые схемы самодельных светодиодных мигалок на основе транзисторных мультивибраторов. На рисунке 1 показана схема мультивибратора, переключающего два светодиода. Светодиоды мигают поочередно, то есть, когда горит HL1, светодиод НL2 не горит, а наоборот.

Можно вмонтировать схему в ёлочную игрушку. Когда включено питание игрушка будет мигать. Если светодиоды будут разного цвета, то игрушка будет одновременно с миганием и менять цвет свечения.

Частоту мигания можно изменять подбором сопротивлений резисторов R2 и R3, кстати, если эти резисторы будут не одинаковых сопротивлений можно добиться того, что один светодиод будет светиться дольше другого.

Но, двух светодиодов для даже самой маленькой настольной ёлочки как-то маловато. На рисунке 2 показана схема, переключающая две гирлянды по три светодиода. Светодиодов стало больше, больше и напряжение, необходимое для их питания. Поэтому теперь источник не 5-вольтовый, а 9-вольтовый (или 12-вольтовый).

Схема самой простой мигалки на светодиодах и транзисторах

Рис.1. Схема самой простой мигалки на светодиодах и транзисторах.

Схема простой мигалки на шести светодиодах и двух транзисторах

Рис.2. Схема простой мигалки на шести светодиодах и двух транзисторах.

Схема светодиодной мигалкис мощными выходами для нагрузки

Рис. 3. Схема светодиодной мигалкис мощными выходами для нагрузки.

В качестве источника питания можно использовать блок питания от старой телеигровой приставки вроде «Денди» или купить в магазине недорогой «сетевой адаптер» с выходным напряжением 9V или 12V.

И все же, даже шести светодиодов для домашней ёлки недостаточно. Хорошо бы увеличить число светодиодов втрое. Да и светодиоды использовать не простые, а сверх яркие. Но, если в каждой гирлянде будет уже по девять последовательно включенных светодиодов, да еще и сверх ярких, то суммарное напряжение, необходимое для их свечения будет уже 2,3Vх9=20,7V.

Плюс, еще несколько вольт необходимых для функционирования мультивибратора. При том в продаже обычно «сетевые адаптеры» из числа недорогих, не более чем на 12V.

Выйти из положения можно, если разделить светодиоды на три группы по три штуки. И группы включить параллельно. Но это приведет к возрастанию тока через транзисторы и нарушит работу мультивибратора. Впрочем, можно сделать дополнительные усилительные каскады на еще двух транзисторах (рис. 3).

Две гирлянды — хорошо, но они просто мигают поочередно. Вот если бы хотя бы три! Для такого случая существует так называемая схема «трехфазного мультивибратора». Она показана рисунке 4.

Схема мультивибратора на трех транзисторах

Рис.4. Схема мультивибратора на трех транзисторах.

Если в коллекторных цепях транзисторов включить светодиодные гирлянды (рис.5), получится своеобразный эффект бегущего огня. Скорость воспроизведе ния светового эффекта можно регулировать заменяя конденсаторы С1, С2 и С3 конденсаторами других емкостей. А так же заменяя резисторы R2, R4, R6 резисторами другого сопротивления. При увеличении емкости или сопротивления скорость переключения светодиодов снижается.

Схема мультивибратора для получения эффекта бегущего огня

Рис. 5. Схема мультивибратора для получения эффекта бегущего огня.

А на рисунке 6 — умощненный вариант на 27 светодиодов. В «мигалках» по схемам на рисунках 3 и 6 можно использовать практически любые светодиоды, но все же желательно сверх яркие или супер яркие.

Схема умощненного варианта мигалки на 27 светодиодах

Рис. 6. Схема умощненного варианта мигалки на 27 светодиодах.

Монтаж можно выполнить на макетных печатных платах, которые продаются в магазинах радиодеталей. Либо вообще без плат, спаяв детали между собой.

Мигалка на светодиодах

Светодиодная мигалка

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания. Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Основой данной схемы является симметричный мультивибратор. Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Читайте так же:
Регулировка холостого хода митсубиси лансер

Схема мигалки

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Формула подсчёта частоты мультивибратора

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер – Hz).

Мигалка на светодиодах

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения – около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно – оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Мигалка с плавной регулировкой частоты вспышек

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 – 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Мигалка на макетной плате

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Цоколёвка и внешний вид КТ315

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» – транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n, а КТ361 – p-n-p. Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

Транзисторы КТ315 и КТ361

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы.

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Читайте так же:
Отрегулировал клапана на хово

Собранная схема

Для питания схемы потребуется блок питания с выходным напряжением 4,5 – 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В × 3 = 4,5 В). О том, как правильно соединять батарейки читайте тут.

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение – 10. 16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены. Посмотрите короткое видео с работой устройства.

Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений, если собирали на макетке. Чтобы не удивляться: «А почему не работает?» – перед впаиванием деталей в схему их стоит проверить мультиметром, а лучше универсальным тестером.

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Простая двухцветная светодиодная мигалка (NE555, 4017)

Назначение данного устройства может быть самым разнообразным, от индикации состояния оборудования, до светотехнического оформления игрушек.

Устройство управляет четырьмя двухцветными светодиодами (их количество можно увеличить до десяти), красно-зеленого цвета. Когда устройство включено, светодиоды сначала три раза мигают красным цветом, потом три раза мигают зеленым цветом, потом все повторяется. Частоту мигания можно регулировать плавно при помощи переменного резистора.

Принципиальная схема

Схема состоит из генератора тактовых импульсов на основе «легендарной» микросхемы «555», и счетчика, двоично-десятичного типа 4017 (аналог микросхемы К561ИЕ8 или К176ИЕ8). Ну и еще светодиоды и транзисторные ключи.

На микросхеме D1 выполнен тактовый генератор, частота вырабатываемых им импульсов зависит от цепи R2-C2 и регулируется плавно переменным резистором R2 в широких пределах. Прямоугольные импульсы на выводе 3 D1, с этого вывода они поступают на вход двоичнодесятичного счетчика D2.

Состояние счетчика последовательно изменяется. Сначала возникает единица на выходе Q0, при этом открывается диод VD1 и через него поступает открывающее напряжение на базу VT1, включаются красные половины светодиодов. Затем, счетчик переходит в состояние «1» и красные половины светодиодов гаснут.

Зажигаются когда счетчик переходит в состояние «2» и появляется единица на выходе Q2. Далее, счетчик переходит в состояние «3» и красные половины светодиодов опять гаснут. Зажгутся, когда счетчик перейдет в состояние «4» (единица появляется на его выходе Q4).

Принципиальная схема простой мигалки для светодиодов на микросхемах NE555 и 4017

Рис. 1. Принципиальная схема простой мигалки для светодиодов на микросхемах NE555 и 4017.

С приходом пятого импульса единица появляется на выходе Q5 счетчика, и открывается диод VD4, через него поступает открывающее напряжение на базу VT2, и он включает зеленые половины светодиодов. Затем, счетчик переходит в состояние «6» и зеленые половины светодиодов гаснут. Зажигаются когда счетчик переходит в состояние «7» и появляется единица на выходе Q7.

Далее, счетчик переходит в состояние «8» и зеленые половины светодиодов опять гаснут. Зажгутся, когда счетчик перейдет в состояние «9» (единица появляется на его выходе Q9).

Затем, все повторяется. Таким образом, по три мигания каждым цветом. В цепях общих катодов двухцветных светодиодов включены токоограничительные резисторы R3-R6, стабилизирующие и уравнивающие яркость свечения.

Детали

Как уже сказано, количество светодиодов можно увеличить до 10 и даже больше. Они включаются так же, как уже показанные на схеме, каждый со своим токоограничительным резисторов. При большом количестве светодиодов, возможно придется заменить транзисторы более мощными и, возможно, составными по схеме Дарлингтона.

Читайте так же:
Синхронизация времени ubuntu cron

Автор использовал индикаторные двухцветные светодиоды, марка которых ему не была известна (продавались просто как «двухцветные», без указания марки, типа). Диоды 1N4148 можно заменить на КД522, КД521. Транзисторы 8050 можно заменить на КТ503.

Маячок на светодиоде схема. Простая мигалка

Ферриты магнитомягкие это вещества поликристаллического строения получаемые в результате спекания при высокой температуре смеси оксидов железа с оксидами цинка, марганца и других металлов, с последующим измельчением и дальнейшим формированием из полученного порошка магнитопроводов необходимой формы. Благодаря высокому удельному сопротивлению потери мощности в ферритах малы, а рабочая частота высокая. Марки ферритов …

Эффект бегущие огни удается получить когда лампы или светодиоды поочередно загораются и гаснут. Схема устройства очень проста, она содержит счетчик импульсов DD2, дешифратор DD3 и задающий генератор на DD1. Скорость перемещения света по гирлянде из светодиодов меняется подбором С1 и R1. Литература Ж.Радио 11 2000

Роль виртуального резистора в регуляторе громкости выполняют 2-а мультиплексора D4 D5 и набор резисторов R6-R20. Мультиплексоры выполняют роль переключателя на 16 положений. При этом закон регулировки можно выбрать самим изменив номиналы R6-R20. если нужен сдвоенный резистор то тогда берем еще 2-а мультиплексора с резисторами и подключаем их управляющие входы (выводы …

TDA7294 — модуль усилителя интегральной микросхемы. Он предназначен для использования в качестве звукового усилителя класса АВ в Hi-Fi звуковоспроизводящей аппаратуре. TDA7294 имеет широкий диапазон выходного напряжения и выходного тока, что позволило TDA7294 применять как на 4 Ом так и на 8 Ом-й нагрузке. TDA7294 будет выдавать 50W (RMS) на …

Микросхема КР174УН31 предназначена для применения в качестве оконечного каскада усиления звукового сигнала, подаваемого с микросхемы непосредственно на громкоговорители (сопротивление более 8 Ом), в малогабаритной аппаратуре (радиоприемниках, плейерах, беспроводных телефонах). Параметры микросхемы представлены в табл.1. Микросхема выпускается в 8-выводном корпусе DIP (типа 2101.8-1). Чертеж дан на рис.1. Типовые схемы включения — …

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания . Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор . Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер — Hz).

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

Читайте так же:
Регулировка холостого хода паджеро спорт

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения — около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно — оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 — 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Обозначение

Номинал/Параметры

Марка или тип элемента

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» — транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n , а КТ361 – p-n-p . Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы .

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 — 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В *3 = 4,5 В). О том, как правильно соединять батарейки читайте .

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение — 10. 16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены и являются рабочими. Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений (если собирали на макетке). Перед впаиванием деталей в схему их стоит проверить мультиметром , чтобы потом не удивляться: «А почему не работает?»

Читайте так же:
Как регулировать клапан перепада давления

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

Устройство и принцип работы

  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.

Необходимые материалы и радиодетали

  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).

Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Последовательность сборки мигалки

Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.

Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод. Снова всем привет! В этой статье буду рассказывать начинающим радиолюбителям о том, как сделать простую мигалку всего на одном самом дешевом транзисторе. Конечно в продаже можно найти готовые , но они есть не во всех городах, частота их вспышек не регулируется, и напряжение питания довольно ограниченно. Часто бвает проще не ходить по магазинам и не ждать неделями заказа с интернета (когда надо иметь мигалку здесь и сейчас), а собрать за пару минут по простейшей схеме. Для изготовления конструкции нам понадобятся:

1 . Транзистор типа КТ315 (Не важно, будет ли он буквы б,в,г, — пойдет любой).

2 . Электролитический конденсатор напряжением не менее 16вольт, и емкостью от 1000 мкф — 3000 мкф (Чем меньше емкость, тем быстрее мигание светодиода).

3 . Резистор 1 кОм, мощность ствите как вам по душе.

4 . Светодиод (Любой цвет, кроме белого).

5 . Два провода (Желательно многожильные).

Для начала сама схема LED мигалки. Теперь приступим к её изготовлению. Можно сделать как вариант на печатной плате, а можно и навесным монтажом, выглядит оно примерно так:

Паяем транзистор, затем электролитический конденсатор, в моем случае это 2200 микрофарад. Не забываем, что у электролитов есть полярность.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector