2. 1 Регулировка силы сварочного тока в сварочных трансформаторах, выпрямителях и преобразователях
2.1 Регулировка силы сварочного тока в сварочных трансформаторах, выпрямителях и преобразователях
Сварочный трансформатор – это аппарат, преобразующий переменное напряжение сети в переменное напряжение для сварки (как правило, понижает переменное напряжение до значения менее 141 В).
Сварочный трансформатор состоит из корпуса 1, внутри которого укреплён замкнутый магнитопровод 4 (сердечник), собранный из отдельных пластин, отштампованных из тонкой (0,5 мм) листовой электротехнической стали. На боковых стержнях магнитопровода расположены катушки первичной 12 и вторичной 11 обмоток трансформатора. Катушки первичной обмотки укреплены неподвижно и включаются в сеть переменного тока. Катушки вторичной обмотки подвижны и от них сварочный ток подаётся на электрод и изделие. Провода сварочной цепи присоединяются к зажимам 2. Сварочный ток плавно регулируется изменением расстояния между первичной и вторичной обмотками. Для этой цели служит вертикальный винт 9 с ленточной резьбой, который оканчивается рукояткой 5. При вращении рукоятки по часовой стрелке вторичная обмотка приближается кпервичной, магнитная связь между ними увеличивается. И сварочный ток растёт. Для установления необходимого сварочного тока на крышке 8 корпуса трансформатора расположена шкала 7.
Сварочный выпрямитель – это аппарат, преобразующий переменный ток сети в постоянный ток для сварки.
варочный выпрямитель состоит из понижающего трехфазного трансформатора с подвижными катушками, выпрямительного блока с вентилятором, пускорегулирующей и защитной аппаратуры, смонтированных в кожухе.
снижает напряжение сети до необходимого рабочего, а также служит для регулирования сварочного тока путем изменения расстояния между первичной и вторичной обмотками. Катушки вторичной обмотки неподвижны и закреплены у верхнего ярма. Катушки первичной обмотки подвижны. Сердечник трансформатора собран из пластин электротехнической стали. Внутри сердечника проходит ходовой винт с закрепленным внизу подпятником. В верхнюю планку крепления первичной обмотки запрессована ходовая гайка. При вращении рукоятки ходового винта вертикально перемещается ходовая гайка, а следовательно, и катушки первичной обмотки.
Выпрямительные блоки собраны по трехфазной мостовой схеме. Для охлаждения выпрямительных блоков служит вентилятор, приводимый во вращение от асинхронного электродвигателя. Охлаждающий воздух, засасывается внутрь кожуха, проходит через блок, омывает трансформатор и выбрасывается с другой стороны.
С
Рисунок 3. Сварочный преобразователь
варочный преобразователь – устройство служащее для преобразования переменного тока в постоянный сварочный ток; он состоит из сварочного генератора постоянного тока и приводного трехфазного асинхронного электродвигателя, сидящих на одном валу и смонтированных в общем корпусе. Сварочный генератор состоит из корпуса с укрепленными на нем магнитными полюсами 10 и приводимого во вращение якоря. Тело якоря набрано из отдельных лакированных пластин электротехнической стали. В продольных пазах его уложены витки обмотки. Рядом с якорем находится коллектор, состоящий из большого числа изолированных друг от друга медных пластинок , к которым припаяны начала и концы каждой группы витков якоря. Магнитное поле внутри генератора создается магнитными полюсами обмоток возбуждения, которые питаются постоянным током от щеток самого генератора. В распределительном устройстве размещены пакетный выключатель, регулировочный реостат, вольтметр , доски зажимов высокого и низкого напряжения и другая аппаратура. При включении электродвигателя якорь начинает вращаться в магнитном поле и в витках его возникает переменный ток, который с помощью коллектора преобразуется в постоянный.
К коллектору прижимаются угольные щетки , с помощью которых постоянный ток снимается с коллектора и подводится к зажимам («+»и «-«). К этим же зажимам присоединяют сварочные провода, подводящие сварочный ток к электроду и изделию. Для охлаждения преобразователя во время работы на валу у него имеется вентилятор.
Регулировка тока сварки по сети
Генератор сварочный относится к многофункциональным устройствам, преобразующим энергию вращения якоря в постоянный ток. Эту энергию можно направить на сварочные работы, а можно просто использовать сварочный генератор в качестве источника питания.
Сила тока при сварке
Сила тока при сварке зависит от диаметра электрода и толщины свариваемого изделия. Тем не менее, при регулировке тока сварки, в зависимости от применяемого электрода, можно использовать и упрощённый принцип: 1 миллиметр диаметра электрода умножаем на 35 ÷ 40 А сварочного тока.
Класс защиты по IP
У всех сварочных аппаратов в технической документации указан класс защиты, например IP21. И, естественно, возникает вопрос, а что это за класс защиты такой и от чего он, собственно, защищает? Класс защиты по IP — это класс защиты электрооборудования от внешних факторов по стандарту IEC-952.
Выбираем инвертор
Многих начинающих сварщиков занимает вопрос о том, как выбрать инверторный сварочный аппарат. Какой сварочный аппарат выбрать для дома. В этом нехитром деле имеет смысл обратить внимание на соотношение цены и качества, а не просто хвататься за то, что дешевле. При выборе сварочного инвертора учтите следующее.
Сила тока при сварке
Сварочный ток выбираем в зависимости от диаметра электрода. А выбор диаметра электрода во многом зависит от толщины свариваемого изделия.
Диаметр электрода, мм | Сварочный ток, А |
1,6 | 35-60 |
2,0 | 30-80 |
2,5 | 50-110 |
3,0 | 70-130 |
3,2 | 80-140 |
4,0 | 110-170 |
5,0 | 150-220 |
Рекомендации для нижнего положения шва
Толщина металла, мм | Диаметр электрода, мм |
2 — 3 | 1,6; 2,0 |
3 — 5 | 2,0; 2,5; 3,0; 3,2; 4,0 |
5 — 8 | 3,0; 3,2; 4,0; 5,0 |
При подборе источника тока (сварочного инвертора), в зависимости от применяемого электрода, можно использовать упрощенную формулу: 1 мм диаметра электрода умножаем на 35 ÷ 40 А сварочного тока.
Пример : диаметр электрода 3 мм.
3 х (35. 40) = 105. 120 А, т.е. источник (сварочный инвертор) должен иметь максимальный ток не менее 120 А.
Важно : для сварки вертикальных и потолочных швов силу тока уменьшают на 10 — 20 %.
- < Назад
- Вперёд >
© 1998-2021 ООО «ВЕСНА-ТЕХНО».
Запчасти на экскаваторы-погрузчики JCB, KOMATSU, HYUNDAI, подшипники SKF, насосное оборудование PIUSI, FILL-RITE,
смазочное оборудование GROZ, распылители MESTO, GLORIA, смазочные материалы MOBIL, Газпром, СОЖ для станка.
Данный сайт носит исключительно информационно-справочный характер и ни при каких условиях не является публичной офертой.
Регулировка сварочного тока
Величина балластного сопротивления для регулятора сварочного тока составляет порядка сотых-десятых долей Ома и подбирается, как правило, экспериментально. В качестве балластного сопротивления издавна применяются мощные проволочные сопротивления, использовавшиеся в подъемных кранах, троллейбусах, или отрезки спиралей ТЭНов (теплоэлектронагревателей), куски толстой высокоомной проволоки. Несколько уменьшить ток можно даже с помощью растянутой дверной пружины из стали. Балластное сопротивление может включаться либо стационарно.
Схема регулятора сварочного тока
Либо так, чтобы потом можно было относительно легко регулировать сварочный ток. Один конец такого сопротивления подключается к выходу трансформатора, а конец сварочного провода оборудуется съемным зажимом, который легко перебрасывается по длине спирали сопротивления, выбирая нужный ток.
Схема регулировки сварочного тока
Нихромовая проволока в качестве балластного сопротивления (диаметром 4 мм и длиной 8 м). Проволока может быть и меньшего диаметра, и при этом будет нужна меньшая длина, но она будет больше нагреваться.
Регулирование сварочного тока балластным сопротивлением
Большинство проволочных резисторов большой мощности изготовлены в виде открытой спирали, установленной на керамический каркас длиной до полуметра, как правило, в спираль смотана и проволока от ТЭНов. Если резистор изготовлен из магнитных сплавов, то в случае его спиральной компоновки, а тем более с какими-либо стальными элементами конструкции внутри спирали, при прохождении больших токов спираль начинает сильно вибрировать. Ведь спираль — это тот же соленоид, а огромные сварочные токи порождают мощные магнитные поля. Уменьшить влияние вибраций можно, растянув спираль и зафиксировав ее на жесткой основе. Кроме спирали, проволоку можно сгибать также змейкой, что тоже уменьшает размеры готового резистора. Сечение токопроводящего материала резистора следует подбирать побольше, потому что при работе он сильно греется. Слишком тонкая проволока или лента будет раскаляться докрасна, хотя даже это, в принципе, не исключает эффективность использования ее в качестве регулятора тока для сварочного аппарата. О реальном значении сопротивления балластных проволочных резисторов судить трудно, так как в нагретом состоянии свойства материалов сильно меняются.
В промышленных сварочных аппаратах способ регулировки тока с помощью включения активных сопротивлений, из-за их громоздкости и нагрева, не получил распространения. Зато очень широко применяется реактивное сопротивление — включение во вторичную цепь дросселя. Дроссели имеют разнообразные конструкции, часто объединенные с магнитопроводом трансформатора в одно целое, но сделаны так, что их индуктивность, а значит, реактивное сопротивление регулируется, в основном, перемещением частей магнитопровода. Заодно дроссель улучшает процесс горения дуги.
Регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами. Через регулирующие устройство проходят значительные токи, что приводит к его громоздкости. Другое неудобство — переключение. Для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200А. Другое дело — цепь первичной обмотки, где токи примерно в пять раз меньше, переключатели для которых являются ширпотребом. Последовательно с первичной обмоткой, так же, как и в предыдущем случае, можно включать балластные сопротивления. Только в этом случаи сопротивление резисторов должно быть на порядок большим, чем в цепи вторичной обмотки. Так, батарея из нескольких параллельно соединенных резисторов ПЭВ-50. 100 суммарным сопротивлением 6-8 Ом способна понизить выходной ток вдвое, а то и втрое, в зависимости от конструкции трансформатора. Можно собрать несколько батарей и установить переключатель. Если же в распоряжении нет мощного переключателя, то можно обойтись несколькими выключателями. Установив резисторы по схеме изображенной ниже, можно, например, сделать регулятор сварочного тока с комбинацией: 0; 4; 6; 10 Ом.
Регулятор тока для сварочного аппарата
Резисторы ПЭВ
Правда, при включении балластного сопротивления в первичной цепи, теряется выгода, которую придает сопротивление во вторичной, — улучшение падающей характеристики трансформатора. Но зато и к каким-либо отрицательным последствиям в горении дуги включенные по высокому напряжению резисторы не приводят: если трансформатор хорошо варил без них, то с добавочным сопротивлением в первичной обмотке он варить будет.
В режиме холостого хода трансформатор потребляет небольшой ток, а значит, его обмотка обладает значительным сопротивлением. Поэтому дополнительные несколько Ом практически никак не сказываются на выходном напряжении холостого хода.
Вместо резисторов, которые при работе будут сильно греться, в цепь первичной обмотки можно установить реактивное сопротивление — дроссель.
Самодельный дроссель
Эту меру следует рассматривать скорее как выход из положения, если никаких других средств понижения мощности не имеется. Включение реактивного сопротивления в цепь высокого напряжения может сильно понижать выходное напряжение холостого хода трансформатора. Падение выходного напряжения наблюдается у трансформаторов с относительно большим током холостого хода — 2-3А. При незначительном потреблении тока — порядка 0,1А — падение выходного напряжения почти незаметно. Кроме того, включенный в первичной обмотке трансформатора, дроссель может приводить к некоторому ухудшению сварочных характеристик трансформатора, хотя и не настолько, чтобы его нельзя было эксплуатировать. В последнем случае все еще сильно зависит от свойств конкретного трансформатора. Для некоторых сварочных аппаратов, включение дросселя в первичную цепь трансформатора никак не сказывается, по крайней мере согласно субъективным ощущениям, на качестве горения дуги.
В качестве дросселя сварочного аппарата, для регулировки тока, можно использовать готовую вторичную обмотку какого-нибудь трансформатора, рассчитанного да выход около 40В и мощностью 200-300 Вт, тогда ничего переделывать не придется. Хотя все же лучше сделать самодельный дроссель, намотав провод на отдельном каркасе от такого же трансформатора — 200-300 Вт, например от телевизора, сделав отводы через каждые 30-60 витков, подключенные к переключателю.
Схема обмотки дросселя для сварочного аппарата
Самодельный дроссель можно изготовить и на незамкнутом — прямом сердечнике. Это удобно, когда уже есть готовая катушка с несколькими сотнями витков подходящего провода. Тогда внутрь нее надо набить пакет прямых пластин из трансформаторного железа. Необходимое реактивное сопротивление выставляется подбором толщины пакета, ориентируясь по сварочному току трансформатора. Для примера: дроссель, изготовленный из катушки, содержащей предположительно около 400 витков провода диаметром 1,4 мм, был набит пакетом железа с общим сечением 4,5 см 2 , длиной, равной длине катушки, 14 см. Это позволило уменьшить сварочный ток трансформатора 120А примерно в два раза. Дроссель такого типа можно сделать и с регулируемым реактивным сопротивлением. Для этого можно менять глубину ввода стержня сердечника в полость катушки. Катушка без сердечника обладает низким сопротивлением, при полностью введенном стержне ее сопротивление максимально. Дроссель, намотанный подходящим проводом, мало греется, но у него сильно вибрирует сердечник. Это надо учитывать при стяжке и фиксации набора пластин железа.
Для самодельных сварочных аппаратов легче всего, еще при намотке обмоток, сделать их с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно разве что для подстройки тока, нежели для его регулировки в широких пределах. Ведь, чтобы уменьшить ток в 2-3 раза, придется слишком увеличивать количество витков первичной обмотки, что неизбежно приведет к падению напряжения во вторичной цепи. Либо же придется наращивать витки всех катушек, что приведет к чрезмерному расходу провода, увеличению габаритов и массы трансформатора.
Для более тонкой регулировки сварочного тока в меньшую сторону, можно использовать индуктивность сварочного кабеля, укладывая его кольцами. Но не стоит перебарщивать, т.к. кабель будет нагреваться.
В последнее время некоторое распространение получили тиристорные и симисторные схемы регулировки тока сварки. При подаче на управляющий вывод тиристора или симистора напряжения определенной величины регулятор открывается и начинает свободно пропускать через себя ток. В схемах регулирования тока, работающих от переменного напряжения, управляющие импульсы обычно поступают на каждом полупериоде. Регулятор открывается в строго определенные (задаваемые) моменты времени, обрезая таким образом начало каждого полупериода синусоиды тока, что уменьшает суммарную мощность проходящего электрического сигнала.
Осциллограмма для трансформатора с тиристорным регулятором
Естественно, ток и напряжение после этого не имеют синусоидальную форму. Такие схемы позволяют регулировать мощность в широких пределах. Человек, разбирающийся в радиоэлектронике, сможет изготовить подобную схему самостоятельно, хотя, надо сказать, устройства такого рода нельзя признать совершенными. При использовании регуляторов данного типа процесс горения дуги несколько ухудшается. Ведь теперь при уменьшении мощности дуга начинает гореть отдельными, все более кратковременными вспышками. У большинства из схем тиристорных регуляторов шкалы не линейны, а калибровка меняется с изменением напряжения сети, ток через тиристор постепенно увеличивается во время работы из-за нагрева элементов схемы. Кроме того, обычно заметно гасится выходная мощность даже при максимальном положении отпирания регулятора, к чему сварочные трансформаторы очень чувствительны. Такой способ регулировки тока сварки, из-за сложности изготовления и невысокой надежности, не получил большого распространения среди самодельных регуляторов сварочного тока.
Измерение сварочного тока
Токоизмерительные клещи
Специфика измерения этим прибором состоит в том, что для измерения не требуется подключаться в электрическую цепь. Сила тока измеряется на расстоянии от провода без прикосновения к нему. У прибора есть специальный разводящийся контур, отчего и название — «клещи», которым охватывается провод с током. Электромагнитное поле тока протекающего в охваченном проводе наводит ток в замкнутом контуре, который и измеряется. На корпусе «клещей» находится переключатель пределов измерения тока, максимальные значения которого обычно достигают — от 100А до 500А для разных моделей приборов. Токоизмерительными клещами можно оперативно воспользоваться практически в любой ситуации, не оказывая никакого влияния на электрическую цепь. Измерять ими можно лишь переменный ток, который создает переменное электромагнитное поле, для постоянного тока этот инструмент бесполезен. Класс точности в данном случае весьма невысок, поэтому можно судить, скорее, только о приблизительных значениях.
Другой способ измерять ток сварки: вмонтировать в электрическую цепь изготавливаемого сварочного аппарата или дорабатываемого промышленного аппарат амперметр, рассчитанный на большие значения тока, а то и просто включать его на время в разрыв цепи сварочных проводов.
Включение амперметра в сварочную цепь также отмечается некоторой спецификой. Дело в том, что последовательно в цепь включается не сам прибор (стрелочный указатель), а его шунт (резистор), стрелочный же индикатор подключается к шунту параллельно.
Схема амперметра для измерения больших токов
Шунт обладает собственным сопротивлением: предположительно сотые доли Ома (так как измерить его обычным омметром не удается). На вид это кусок металла в несколько сантиметров в длину прямоугольного сечения с мощными контактными площадками с обеих сторон. От точности сопротивления шунта зависит и точность показания прибора. Для каждой модели амперметра предусмотрен шунт определенного сопротивления, и они должны продаваться вместе.
Амперметр с шунтом
И уж чего ни в коем случае не нужно делать, так это пробовать включить стрелочный прибор в цепь вообще без шунта. Если у вас где-то завалялся стрелочный прибор, на шкале которого значатся сотни ампер, то это вовсе не значит, что он сам их измеряет. Проверьте его: и сам по себе прибор окажется всего-то микро- или миллиамперметром. Иногда попадаются стрелочные приборы, у которых шунт вмонтирован внутри корпуса и к нему дополнительно ничего больше подключать не нужно. Как правило, такие отличаются огромными размерами и невысоким классом точности.
Немалое значение имеет способность стрелочного указателя измерительного прибора устанавливаться на текущее значение, преодолевая колебательные переходные процессы при изменении тока, иначе стрелка будет судорожно плясать по шкале уже при незначительных изменениях тока, которые неизбежны при горении сварочной дуги.
Импортозамещение
АО «НПФ «ИТС» — головная компании группы ИТС, объединяющая производство сварочной техники и дилерскую сеть по продаже оборудования, материалов и инженерных услуг для сварочного производства.
Производство стандартного сварочного оборудование ведется на ПАО «СЭЛМА», г. Симферополь и ОАО «ЭСВА», г. Калининград, а также частично на собственной производственной площадке в г. Санкт-Петербург.
ООО «ИТС-Инжиниринг» занимается вопросами научно-технического сотрудничества с судостроительными и судоремонтными предприятиями и разработкой линейки сварочного оборудования под нужды именно этих отраслей отечественной промышленности. Особенно актуальной деятельность ООО «ИТС-Инжиниринг» становится сейчас, когда наша промышленность взяла курс на импортозамещение и нам нужно предложить нашим Заказчикам не просто отечественное оборудование, а в первую очередь современную и конкурентоспособную технику, не уступающую зарубежным аналогом в техническом отношении и выигрывающую по цене и гарантийным обязательствам.
— Надежное зажигание и устойчивое горение дуги
— Наличие термозащиты от перегрузки
— Возможность как местного, так и дистанционного регулирования сварочных параметров
— Существенно меньшее энергопотребление и вес источника в сравнении с аналогами
— Обладает двумя видами жестких внешних вольтамперных характеристик для сварки и наплавки под слоем флюса
— Высокая надежность обмоточных узлов
— Класс изоляции Н
— Плавная регулировка сварочного тока при падающей внешней характеристики, напряжения — при жесткой внешней характеристики.
— Защита тиристоров от перепадов напряжения осуществляется резисторно-емкостной цепью.
Напряжение в сети: 220/380В
Предназначен для ручной дуговой сварки покрытыми электродами на переменном токе малоуглеродистых и низколегированных сталей.
Напряжение в сети: 220/380В
Предназначен для ручной дуговой сварки покрытыми электродами с основным и рутиловым видами покрытия на переменном токе малоуглеродистых и низколегированных сталей.
Напряжение в сети: 220/380В
Предназначен для ручной дуговой сварки покрытыми электродами с основным и рутиловым типами покрытия на переменном токе малоуглеродистых и низколегированных сталей.
Трехфазная сеть 380 В 50 Гц
Предназначен для ручной дуговой сварки покрытыми электродами на переменном токе малоуглеродистых и низколегированных сталей.
Трехфазная сеть 380 В 50 Гц
Предназначен для ручной дуговой сварки покрытыми электродами изделий из сталей на постоянном токе.
Трехфазная сеть 380 В 50 Гц
Предназначен для ручной дуговой сварки покрытыми электродами изделий из стали на постоянном токе
Трехфазная сеть 380 В 50 Гц
Предназначен для ручной дуговой сварки покрытыми электродами изделий из стали на постоянном токе.
Трехфазная сеть 380 В 50 Гц
Предназначен для ручной дуговой сварки на постоянном токе покрытыми электродами (режим ММА) изделий из малоуглеродистых, углеродистых, низколегированных и коррозионостойких сталей, а так же для аргонодуговой сварки неплавящимся электродом
— Высокий уровень стабилизации сварочного тока при колебаниях питающей сети;
— Оснащены тепловой защитой трансформатора и выпрямительного блока;
— Сниженные габаритные размеры и масса;
— Улучшенный дизайн и эргономика;
— Более простая конструкция обеспечивает высокую надежность и долговечность работы;
— Простота обслуживания;
— Возможность дистанционного регулирования сварочного тока с помощью пульта;
— Легкий поджиг дуги;
— Высокая стабильность горения дуги;
— Высокое качество формирования сварочного шва;
— Возможность выполнения работ неплавящимся электродом в среде защитных газов на постоянном токе при комплектации блоком БУСП-ТИГ;
Трехфазная сеть 380 В 50 Гц
— гаражей;
— станций технического обслуживания;
— строительных объектов;
— предприятий сферы ЖКХ.
— универсальность, возможность выполнения сварки на переменном и постоянном токе;
— плавно-ступенчатое регулирование сварочного тока в большом диапазоне значений;
— простота конструкции механического регулятора сварочного тока, заключающаяся в использовании подвижного шунта;
— легкость зажигания и стойкость горения дуги;
— небольшая масса и размеры;
— наличие быстроразъемных безопасных токовых разъемов;
— удобство перемещения за счет наличия колес.
Трехфазная сеть 380 В 50 Гц
Предназначен для ручной дуговой сварки малоуглеродистых, низколегированных и коррозионностойких сталей. ВД-306С1 обеспечивают сварку на постоянном токе.
Трехфазная сеть 380 В 50 Гц
Предназначен для комплектации сварочных постов ручной дуговой сварки покрытыми электродами изделий из углеродистых и легированных сталей на постоянном токе.
Трехфазная сеть 380 В 50 Гц
Предназначен для питания постоянным током сварочных постов.
Трехфазная сеть 380 В 50 Гц
Предназначен для комплектации постов ручной дуговой сварки покрытыми электродами изделий из углеродистых и легированных сталей на постоянном токе.
Трехфазная сеть 380 В 50 Гц
Предназначен для питания постоянным током сварочных постов.
Трехфазная сеть 380 В 50 Гц
Предназначен для комплектации сварочных постов ручной дуговой сварки покрытыми электродами изделий из углеродистых и легированных сталей на постоянном токе.
Трехфазная сеть 380 В 50 Гц
Предназначен для питания постоянным током сварочных постов.
Трехфазная сеть 380 В 50 Гц
Предназначен для ручной дуговой сварки покрытыми электродами изделий из стали на постоянном токе.
Предназначен для организации постов ручной дуговой и механизированной сварки в защитных газах с питанием от многопостовых выпрямителей или шинопроводов
— При механизированной сварке в качестве защитных газов используются CO2 и смеси газов, проволоки сплошного сечения и порошковые.
— Снижение потерь электродов при ручной дуговой сварке (до при содержании Ni>25%) обеспечивает высокую экономическую эффективность при сварке электродами для нержавеющих сталей.
Предназначен для регулирования тока при ручной дуговой сварке и наплавке металлов плавящимся электродом от многопостовых сварочных выпрямителей типа ВДМ, а так же для обеспечения требуемой крутизны внешней вольтамперной характеристики в сварочных источниках.
Реостат может применяться для работы в закрытых помещениях или на открытом воздухе под навесом, защищающим от воздействия атмосферных осадков и солнечной радиации, на высоте до 1000м. над уровнем моря. Реостат предназначен для работы в условиях умеренного климата при температуре окружающего воздуха от (-45 °C) до (+40 °C) и относительной влажности воздуха не более 80% при 20 °C.
Предназначен для регулирования сварочного тока при ручной дуговой сварке и наплавке металлов плавящимся электродом от многопостовых сварочных выпрямителей и генераторов постоянного тока
Балластный реостат РБ-302Т предназначен для более высоких нагрузок по продолжительности к сравнению с РБ-302 за счет увеличенного диаметра фехралевой проволоки, которая используется для изготовления элементов сопротивления реостатов
Предназначен для регулирования тока при ручной дуговой сварке и наплавке металлов плавящимся электродом от многопостовых сварочных выпрямителей типа ВДМ, а так же для обеспечения требуемой крутизны внешней вольтамперной характеристики в сварочных источниках.
Балластный реостат РБ-306 предназначен для более высоких нагрузок по продолжительности к сравнению с РБ-302 за счет увеличенного диаметра фехралевой проволоки, которая используется для изготовления элементов сопротивления реостатов.
Реостат может применяться для работы в закрытых помещениях или на открытом воздухе под навесом, защищающим от воздействия атмосферных осадков и солнечной радиации.