Personalcam.ru

Авто Аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка частоты вращения однофазного двигателя

Регулировка частоты вращения однофазного двигателя

Насколько я знаю, для регулировки оборотов асинхронного двигателя нужно менять частоту тока. Вот скопировал с одного сайта . Сам я это устройство не повторял.

Как известно можно изменять (регулировать) скорость вращения асинхронного безколлекторного электродвигателя изменяя частоту питающего двигатель переменного напряжения. На этом принципе был разработан, приведенный здесь, электронный регулятор скорости вращения. Регулятор позволяет изменять скорость вращения в довольно широких пределах – от 1000 до 4000 об/мин.
Регулятор состоит из задающего генератора с регулируемой частотой от 50 до 200 Гц, в который входят мультивибратор на микросхеме К561ЛА7 , счетчик К561ИЕ8 формирующий сигналы управления с фиксированным "мертвым временем" для управления силовыми полевиками полумоста регулятора.

Выходной трансформатор Т1 обеспечивает развязку верхнего и нижнего транзисторов полумоста. Выпрямитель, удвоитель напряжения питающей сети состоит из диодного моста VD9, включенного по нестандартной схеме и конденсаторов фильтра на которых и удваивается напряжение питания полумоста.
Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4.
Для трансформатора управления ключами, использовался каркас трансформатора от БП телевизора KORFUNG Ч/Б. Можно применить любой другой с аналогичным сечением железа – тип магнитопровода не имеет значения. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная – две отдельные обмотки по 60 витков тем же проводом. Данные по вольтажу обмоток: первичка 2х12 вольт, вторички 12 вольт каждая, если сечение железа отличается от заданного, расчитать можно по формулам для трансформаторов на 50Гц. Марка провода роли не играет (медный).
Обе вторичные обмотки нужно хорошо изолировать друг от друга, так как потенциал между ними достигает 640 вольт. Подключать выходные обмотки к затворам ключей необходимо в противофазе.

Регулятор может работать с двигателями мощностью до 500Вт. Для применения регулятора с более мощными двигателями необходимо применить в схеме большее число силовых ключей в параллельном включении и увеличить емкость конденсаторов фильтра питания С3 и С4.
Конструктивно регулятор выполнен на печатной плате размрами 110 х 80мм, трансформатор управления ключами ставится отдельно.

Добавлено (26.08.2013, 19:50)
———————————————
Он там регулирует от 50гц до 200гц. Но думаю, если изменить емкость С1 можно добиться частоты пониже. Тем самым и уменьшить обороты.

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

  • Что такое асинхронный двигатель?
  • Двигатели с короткозамкнутым ротором (АДКР)
  • Двигатели с фазным ротором

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Читайте так же:
Плавная регулировка скорости вращения двигателя

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

где 2p – число полюсов; Z1 – количество пазов в сердечнике статора; y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов; Z1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Регулировка оборотов двигателя 220в – Управление скоростью вращения однофазных двигателей

Управление скоростью вращения однофазных двигателей

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки – рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Читайте так же:
Подключение вентилятора охлаждения с регулировкой скорости

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя – разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2 – скорость вращения ротора

При этом обязательно выделяется энергия скольжения – из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз – то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор – это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора
          • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
          • все недостатки присущие регулировке напряжением

          Тиристорный регулятор оборотов двигателя

          В данной схеме используются ключи – два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

          Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно “отрезается” кусок вначале или, реже в конце волны напряжения.

          Таким образом изменяется среднеквадратичное значение напряжения.

          Данная схема довольно широко используется для регулирования активной нагрузки – ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

          Ещё один способ регулирования – пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно – шумы и рывки при работе.

          Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

          • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
          • добавляют на выходе конденсатор для корректировки формы волны напряжения
          • ограничивают минимальную мощность регулирования напряжения – для гарантированного старта двигателя
          • используют тиристоры с током в несколько раз превышающим ток электромотора

          Достоинства тиристорных регуляторов:

              • низкая стоимость
              • малая масса и размеры
                  • можно использовать для двигателей небольшой мощности
                  • при работе возможен шум, треск, рывки двигателя
                  • при использовании симисторов на двигатель попадает постоянное напряжение
                  • все недостатки регулирования напряжением

                  Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

                  Транзисторный регулятор напряжения

                  Как называет его сам производитель – электронный автотрансформатор или ШИМ-регулятор.

                  Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы – полевые или биполярные с изолированным затвором (IGBT).

                  Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

                  Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

                  Выходной каскад такой же как и у частотного преобразователя, только для одной фазы – диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

                  Плюсы электронного автотрансформатора:

                          Небольшие габариты и масса прибора
                              • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
                              • Все недостатки регулировки напряжением

                              Частотное регулирование

                              Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина – не было дешёвых силовых высоковольтных транзисторов и модулей.

                              Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие – массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

                              На данный момент частотное преобразование – основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

                              Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

                              Однофазные двигатели могут управляться:

                              • специализированными однофазными ПЧ
                              • трёхфазными ПЧ с исключением конденсатора
                              Преобразователи для однофазных двигателей

                              В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей – INVERTEK DRIVES.

                              Это модель Optidrive E2

                              Для стабильного запуска и работы двигателя используются специальные алгоритмы.

                              При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

                              f – частота тока

                              С – ёмкость конденсатора

                              В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

                              Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя – в некоторых моделях это сделать довольно сложно.

                              Преимущества специализированного частотного преобразователя:

                                    • интеллектуальное управление двигателем
                                    • стабильно устойчивая работа двигателя
                                    • огромные возможности современных ПЧ:
                                      • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
                                      • многочисленные защиты (двигателя и самого прибора)
                                      • входы для датчиков (цифровые и аналоговые)

                                      Минусы использования однофазного ПЧ:

                                            • ограниченное управление частотой
                                            • высокая стоимость
                                            Использование ЧП для трёхфазных двигателей

                                            Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

                                            Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

                                            Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого – магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

                                            В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

                                            При работе без конденсатора это приведёт к:

                                            • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
                                            • разному току в обмотках

                                            Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

                                            Arduino.ru

                                            Управление оборотами однофазного асинхронного двигателя с помощью ARDUINO

                                            • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

                                            Подскажите пожулуйста как можно управлять оборотами однофазного асинхронного двигателя (вентилятор твердотопливного котла)с помощью ардуино? Я новичок в этом перечитал гору информации, в голове все смешалось одни пишут что можно управлять с помощью обычного диммера, другие пишут что необходим частотный преобразователь. Мощность двигателя 85 вт, 2700 об. Планируется регулировать кол-во оборотов в зависимости от температуры теплоносителя от 30% до 100%, плавно, без рывков запуская двигатель на малых оборотах, а затем набирая их по необходимости.

                                            • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

                                            Andy аватар

                                            Существует три способа регулирования частоты вращения асинхронного двигателя:

                                            1. изменением скольжения (только двигатели с фазным ротором);
                                            2. изменением числа пар полюсов;
                                            3. изменением частоты источника питания.
                                            • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

                                            Для нормального управления асинхронным двигателем нужен частотник. Устройства плавного пуска (=УПП, =софт-стартеры) используют фазо-импульсный (ФИУ) способ подачи питания на двигатель (как диммер) только для того, чтобы обеспечить плавное нарастание тока потребления двигателя и не коротнуть питающую сеть при пуске. После разгона двигателя от УПП, в отличие от частотника, двигатель просто перебросить полностью на питание от сети, поскольку УПП по своему устройству синхронизировано с сетью. Использовать ФИУ для полноценного управления двигателем не получится, хотя в некоторых редких частных случаях может и «прокатить».

                                            Если ПЧ для Вас дорого, то можно попробовать «старинный» метод регулировки подачи воздуха — управление шиберной задвижкой от сервопривода. Тут уже упор придется делать на механику. Собственно сам двигатель при таком способе всегда будет работать в номинале.

                                            • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

                                            VictorNsk аватар

                                            В этой статье что не понятно?

                                            Существует три способа регулирования частоты вращения асинхронного двигателя:

                                            1. изменением скольжения (только двигатели с фазным ротором);
                                            2. изменением числа пар полюсов;
                                            3. изменением частоты источника питания.

                                            Самому точно понятно что написал?

                                            • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

                                            Andy аватар

                                            VictorNsk, кури букварь, для начала. Только лохи управляют частотой вращения асинхронного двигателя при помощи изменения напряжения.

                                            • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

                                            VictorNsk аватар

                                            VictorNsk, кури букварь, для начала. Только лохи управляют частотой вращения асинхронного двигателя при помощи изменения напряжения.

                                            А особо одаренные, накурившиеся букварей, какой практический метод управления, с приведением конкретной схемы управления, предпочитают? Цитировать отрывки самокруток у вас неплохо получается. Интересно узнать ответ на предыдущий вопрос — самому точно понятно что написал?

                                            • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

                                            я бы для начала попытался больше узнать про особенности двигателя. Они бывают разные

                                            В моем случае производитель заявляет о возможности управлять производительностью вентилятора при помощи напряжения и в продаже есть ручные регуляторы двух типов — трансформаторные и электронные. Трансформаторный тут все просто — по сути ЛАТР с фиксированными коэффициентами. Один из вариантов для меня — купить готовый регулятор и щелкать обмотки релюшками. Если не лень, то можно такой трансформатор намотать самому. На каком принципе работает продаваемый электронный регулятор к сожалению не известно.

                                            Такие же как этот у меня вентилятор я уже регулировал обычным ФИМ диммером. Они так работают много лет. Однако там есть большие минусы — стабильно вентиляторы работают только в узком диапазоне регулировок и при некоторых режимах издают лишний шум.

                                            Сейчас планирую использовать ШИМ, в ссылке выше есть детали. Сразу предупрежу. Мой вариант не факт подойдет вам, ибо конструкция и особенности двигателей могут быть разные. Не забывайте, что при неправильном режиме работы обмотки могут перегреваться, что в конечном итоге может привезти к отказу

                                            частотный преобразователь все называют самым универсальным способом. Однако он технически сложный, а если покупать — дорогой

                                            Чипгуру

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            • 1

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #1 neoblack » 05 авг 2020, 23:20

                                            Здравствуйте, не может никто подкинуть схему (желательно очень попроще) регулятора скорости асинхронного двигателя 60 ватт с таходатчиком? Пойдет и на анализе тока без тахо, главное чтобы поддерживал скорость на минимуме оборотов и обороты можна было регулировать с помоoью микроконтроллера ардуино, stm32. например через оптопару.
                                            Просто пробовал схему с переменным реизистором на U2010B чето вообще не смог завести нормально, крутиться на максимальных оборотах еле-еле, даже не дошел городить схему управления контроллера.

                                            Регулирует нормально US-52 регулятор, но там слишком много всякой електроники

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #2 AnSm » 05 авг 2020, 23:30

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #3 neoblack » 05 авг 2020, 23:51

                                            US52 вот его схема внизу. Слишком сложна для повторения. Работает прекрасно во всем положении регулятора, регулируются обороты асинхронника от нуля до максимума. Подключен таходатчик, даже на минимуме не могу затормозить движок рукой. Простым открывание симистора регулируются обороты. Внизу фото регулятора, схема, осциллограмма открывания симистора. Можна сделать такое же попроще и с контролем регулирования скорости контроллером?

                                            Отправлено спустя 5 минут 1 секунду:
                                            Вот двигатель какой. И осциллограмма открывания симистора на контроллере -стандартный диммер с включением симистора и отключением его при переходе через ноль (движок работает очень хреново, очень малая регулировка скорости и вот выставил обороты небольшие, бац движое резко ускоряеться и выходит на максимум).
                                            Чето вообще не могу понять как можна сделать вот такие острые пики отключения симистора, как на регуляторе первая картинка.

                                            Вложения Регулятор скорости асинхронного двигателя на микроконтроллере - IMG_20200723_174700.jpg Регулятор скорости асинхронного двигателя на микроконтроллере - regulyator_oborotov_kollektornyh_elektrodvigateley_us_52.jpg Регулятор скорости асинхронного двигателя на микроконтроллере - regulyator_oborotov_kollektornyh_elektrodvigateley_us_52_5.jpg Регулятор скорости асинхронного двигателя на микроконтроллере - IMG_20200725_170413.jpg Регулятор скорости асинхронного двигателя на микроконтроллере — Triac_75.gif (4.91 КБ) 617 просмотров

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #4 T-Duke » 06 авг 2020, 19:38

                                            Вот ни разу не поверю, что асинхронник вменяемо регулируется этой схемой. Может Вы спутали коллекторный двигатель с асинхронным? Чтобы регулировать асинхронный двигатель, нужно регулировать частоту переменного напряжения, питающего двигатель.
                                            Для регулировки асинхронного привода используются инверторы. Там сетевое напряжение выпрямляется в постоянное, от него питается мост инвертора. Инвертор в свою очередь превращает постоянное напряжение в переменное, но уже регулируемой частоты. Фазоимпульсный регулятор не меняет частоту напряжения питающего двигатель, он только регулирует количество энергии передаваемой в нагрузку за полупериод сетевой синусоиды. Регулировать нагреватель выйдет. Регулировать асинхронник нет.

                                            На фото показан однофазный асинхронник. Чтобы его нормально регулировать, нужно собирать специальный двухфазный инвертор, и выбрасывать конденсатор. А тот фазоимпульсный регулятор что на фото, не пригоден для регулировки асинхронного привода. Нужны гранаты другой системы.

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #5 neoblack » 06 авг 2020, 22:12

                                            Вот ссылка на видео как регулирует обороты. И схема внутри что я дал, могу вскрыть и показать. (да там редуктор, потому и макс скорость такая)
                                            https://photos.app.goo.gl/2dbLNLvK2yedbrAX9

                                            И на осциллограмме вот конкретно импульсы что идут на него

                                            Отправлено спустя 3 минуты 12 секунд:
                                            Да и вот еще одна схема для регулировки оборотов асинхронника, тот же симисторв вкл и выкл, и никаких извращений не нужно. Просто сложные чуть схемы. Мне бы с помощью контроллера как-то

                                            Вложения Регулятор скорости асинхронного двигателя на микроконтроллере - 2126196025_.JPG.4ccb0f6a8bb53f1fe967af0a79065e64.jpg

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #6 AnSm » 06 авг 2020, 22:34

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #7 neoblack » 06 авг 2020, 22:46

                                            И как объяснить регулировку оборотов асинхронника на видео? Чудеса?

                                            И на схеме не увидели движок с кондером? и пусковую обмотку тоже не видно? там возле симистора?

                                            Вложения Регулятор скорости асинхронного двигателя на микроконтроллере - regulirovka-oborotov-asinkhronnogo-dvigatelya-2-500x261.jpg

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            Сообщение #8 AnSm » 06 авг 2020, 23:10

                                            А кто вам сказал, что там асинхронник? По всем ссылкам, кроме одной, двигатель 5i60rgu стредуктором или без, является регулируемым однофазным двигателем с изменением оборотов от 90 до 1400 с не большим. Что прямо говорит о коллекторном двигателе. Лишь в одном месте не грамотные продаваны, написали что двигатель аснхронный. Ваша ссылка говорит подробно о том же, что я вам и пояснял. Название Однофазный говорит лишь о том, что двигатель питается от однофазной сети, а не о том, что двигатель асинхронный. По регулировке на видео явно коллекторный двигатель.

                                            Отправлено спустя 10 минут 53 секунды:
                                            Поймите, если бы было все так просто с регулировкой скорости асинхронников, никто бы и не стал изобретать частотные преобразователи.

                                            Регулятор скорости асинхронного двигателя на микроконтроллере

                                            это скорее всего 2-х обмоточный асинхронный с конденсатором
                                            переключением кондёра с одной обмотки на другую меняют направление вращения ( релюхой внутри преобразователя или вовсе перепайкой проводов)
                                            инвертора достаточно и однофазного
                                            но при отсутствии вменяемых требований по моменту и вообще по стабильности работы и так как есть сойдёт , на обратной связи там даже не энкодер а тахогенератор у нас вроде
                                            похожие привода стоят у нас на маркираторных машинах на транспортёрчиках
                                            регулирование -как из ж*пы -ну в смысле непоймикак , но лазер или струйная головка сама отследит когда и где маркировать , там где нужна точность давно выкинули эти привода в помойку и заменили на
                                            3-х фазные инвертора с обычными асинхронниками

                                            голоса
                                            Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector