Personalcam.ru

Авто Аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотник или как регулировать скорость вращения электродвигателя

Частотник или как регулировать скорость вращения электродвигателя.

При управлении различными процессами довольно часто возникает ситуация, когда необходимо управлять скоростью вращения электродвигателя. Например, необходимо уменьшить расход воды в системе водоснабжения за счёт снижения оборотов насоса, или отрегулировать уровень воздухообмена в системе вентиляции, меняя скорость вращения приточного вентилятора.

частотный преобразователь danfos

Регулировка скорости вращения электродвигателя может производиться за счёт изменения частоты и (или) величины управляющего напряжения, а также за счёт управления сдвигом фаз (для трёхфазных двигателей). Это может быть реализовано с использованием различных устройств, наиболее универсальным и многофункциональным из которых является частотный преобразователь. О нём и пойдёт речь в этой статье.

Частотный преобразователь (он же «частотник», он же «инвертор»)

В обиходе частотный преобразователь чаще называют частотником или инвертором.

Как уже было сказано, частотник предназначен для управления скоростью вращения электродвигателя. Это происходит за счёт изменения характеристик питающего напряжения.

Существуют модификации частотников для управления трёхфазными и однофазными двигателями.

Типовая структурная схема управления электродвигателем выглядит так:

На схеме трёхфазное питание подаётся на вход инвертора через автоматический выключатель, выполняющий защитную функцию, и магнитный пускатель (расцепитель), с помощью которого можно разорвать цепь по внешнему сигналу, когда это необходимо.

Частотник преобразует характеристики входного напряжения в соответствии с заданной схемой управления и требуемой частотой электродвигателя, и «выдаёт» на выход три фазы с изменёнными параметрами (частотой, величиной напряжения, сдвигом фаз).

Задание частоты может производится непосредственно с пользовательской панели преобразователя частоты или дистанционно с ПК или пульта оператора.

Для однофазного двигателя структурная схема управления аналогична.

Схема частотного преобразователя

структурно-функциональная схема частотника

Рассмотрим основные структурно-функциональные узлы преобразователя частоты:

Изменение скорости вращения двигателя с помощью частотного преобразователя

  1. Силовая часть — выполняет изменение характеристик входного напряжения для достижения требуемой скорости вращения двигателя.
  2. Управляющий процессор — «мозг» частотника, координирует работу всех остальных узлов. Управляет силовой частью, задавая алгоритм преобразования входного напряжения в выходное.
  3. Интерфейс пользователя — может состоять из кнопок, ручек, цифровых и текстовых табло. Необходим для настройки преобразователя, задания требуемой частоты вращения двигателя и других параметров. На графическом табло отображается текущее состояние частотника (заданная скорость вращения, ток двигателя и др.).
  4. Цифровой интерфейс — аналог интерфейса пользователя. Позволяет подключиться к преобразователю дистанционно, используя один из поддерживаемых протоколов, и управлять, настраивать, анализировать состояние частотника с удалённого ПК (пульта оператора).
  5. Дискретные входы — могут быть задействованы для управления частотником с помощью внешних дискретных сигналов. Например, можно назначить на каждый дискретный вход определённую частоту, с которой должен крутиться двигатель. Допустим частотник имеет пять входов. Настраиваем на 1 вход 10 Гц, 2 — 20 Гц, …, 5 — 50 Гц, и подключаем к каждому входу кнопку — тогда при нажатии на соответствующую кнопку преобразователь будет принимать соответствующую частоту в качестве заданной.
  6. Аналоговые входы — могут применяться для управления частотой с помощью внешнего аналогового унифицированного сигнала (4-20 мА или 0-10 В). Допустим, в системе вентиляции необходимо менять частоту вентилятора в зависимости от температуры воздуха. Для этого можно применить датчик температуры с аналоговым сигналом на выходе, подключив его к соответствующему входу частотника, и настроить преобразователь на управление от аналогового входа. Тогда при увеличении температуры, будет происходить увеличение скорости вращения вентилятора.
  7. Дискретные выходы — могут использоваться для регистрации различных событий (информационных или аварийных). Например можно настроить, чтобы выход срабатывал, когда преобразователь достиг заданной частоты, произошёл перегрев двигателя и т.д.
  8. Аналоговые выходы — используются для передачи другим устройствам текущих непрерывных параметров частотника (частоты вращения, тока, теплового состояния и др.).

Настройка частотного преобразователя

Для того, чтобы начать использование частотного преобразователя, его необходимо настроить, — то есть задать минимально-необходимый набор параметров:

настройка частотника

Частотник: выбор канала задания частоты

  1. Параметры двигателя — номинальные значение тока, напряжения, мощности, максимальная и минимальная частоты вращения и т.д. Обычно эти параметры указаны на шильдике двигателя или в руководстве по эксплуатации.
  2. Канал задания — способ задания необходимой частоты вращения. Как уже говорилось выше, частоту можно задать различными способами: с помощью интерфейса пользователя, цифрового интерфейса, дискретных или аналоговых входов. Эта настройка даёт частотнику понятие о том, откуда конкретно брать задание. Канал задания может меняться в процессе работы преобразователя, например можно настроить один из дискретных входов на изменение канала задания, и с помощью внешнего переключателя, подключенного к указанному входу, менять канал задания.
  3. Канал управления — определяет откуда осуществляется запуск/остановка (и некоторые другие управляющие функции) преобразователя. В качестве канала управления может быть задан интерфейс пользователя, цифровой интерфейс или дискретные входы. Канал управления, так же как и канал задания, может быть изменён в процессе работы преобразователя.
  4. Схема преобразования — алгоритм управления питающим напряжением электродвигателя. Эту настройку не рекомендуется менять неопытным пользователям, лучше оставить её по-умолчанию.
Читайте так же:
Регулировка зазора дискового тормоза

Частотные преобразователи

Частотные преобразователи

Частотный преобразователь еще называют частотно-регулируемым электроприводом, или частотником. Статическое преобразовательное устройство меняет скорость вращения асинхронных электрических двигателей переменного тока.

Принцип работы частотника

Частотный преобразователь изменяет частоту и уровень напряжения питания мотора. Это позволяет регулировать параметры вращения электрического асинхронного двигателя. Все частотники имеют значительный КПД — около 98%. Частно-регулируемый электропривод использует для работы только активную составляющую тока нагрузки из сети. Микропроцессорная система управления позволяет с высокой точностью контролировать работу электродвигателя. Устройство помогает регулировать все основные параметры работы мотора. Использование частотников снижает риск аварий и внештатных ситуаций.

Частотники используют на различных промышленных объектах. Особенно выгодна установка частотных преобразователей в системах транспортировки жидкостей. Раньше для контроля за производительностью работы таких объектов использовали задвижки или регулирующие клапаны. Современная альтернатива — монтаж частотно-регулируемого электропривода. Частотник будет регулировать производительность асинхронного двигателя, который обеспечивает работу колеса насосного агрегата или вентилятора.

Конструкция

Частотные преобразователи состоят из:

  • выпрямителя — мост постоянного тока, предназначенный для преобразования переменного тока промышленной частоты в постоянный;
  • инвертора — преобразователь постоянного тока в переменный с необходимой частотой и амплитудой;
  • входных тиристоров (GTO) или транзисторов (IGBT) — питающие устройства, обеспечивающие необходимый для работы электродвигателя ток.

Чтобы улучшить форму выходного напряжения, между инвертором и мотором иногда монтируют дроссель. Уменьшить электромагнитные помехи помогает EMC-фильтр.

Алгоритмы управления частотным преобразователем

Для контроля за работой частотников может быть выбран один из следующих алгоритмов управления.

Частотный. Этот алгоритм рекомендуют использовать, если известна зависимость момента нагрузки двигателя, и этот показатель остается практически неизменным при одинаковой частоте. Для частотного управления нижняя граница регулирования частоты должна быть не меньше 5-10 Гц при независимом от частоты моменте. Стандартные нагрузки с моментом, зависимым от скорости вращения, — работа на центробежный насос или вентилятор. Диапазон регулирования частоты в этом случае может составить от 5 до 50 Гц и выше.

Частотный с обратной связью по скорости. Подходит для прецизионного регулирования, если известна зависимость момента от скорости вращения. Для управления преобразователем по такому алгоритму нужно использовать инкрементальный энкодер.

Векторный. Этот алгоритм управления частотниками выбирают, если во время работы нагрузка на одинаковой частоте меняется, а прямой связи между моментом нагрузки и скоростью вращения нет.

Векторный алгоритм также используют, если нужно получить расширенный диапазон регулирования частоты при номинальных моментах. Например, 0-50 Гц для момента 100% или даже кратковременно 150–200% от номинального момента. Для реализации векторного метода необходимо в режиме реального времени проводить сложные вычисления. Процессор частотного преобразователя выполняет их автоматически на основании данных о выходном токе, частоте и напряжении, а также паспортных характеристик электродвигателя, которые вводит пользователь.

Частотный преобразователь реагирует на изменение выходного тока (момента нагрузки) со скоростью 50-200 мсек. Векторный алгоритм уменьшает реактивный ток двигателя при снижении нагрузки с помощью одновременного уменьшения напряжения на электродвигателе. Если нагрузка на валу возрастает, частотник увеличивает напряжение на двигателе до оптимальных показателей.

Читайте так же:
Jeep patriot 2007 регулировка сцепления после замены

Векторный с обратной связью по скорости. Метод подходит для прецизионного регулирования скорости вращения, если при работе нагрузка меняется при неизменных показателях частоты. Этот алгоритм управления частотниками также используют, если нужен максимальный диапазон регулирования частоты. Для такого метода управления необходим инкрементальный энкодер.

Векторные преобразователи частоты ОВЕН ПЧВ с функцией автоматической оптимизации энергопотребления предназначены для управления частотой вращения асинхронных двигателей в составе приводов промышленных установок, систем отопления, вентиляции и кондиционирования воздуха. Реальное снижение энергопотребления при использовании ОВЕН ПЧВ может достигать 35 %.

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:
  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.
Минусы непосредственных преобразователей частоты:
  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:
  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.
Читайте так же:
Регулировка фар в долгопрудном
Минусы преобразователей с промежуточным звеном постоянного тока:
  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.
Читайте так же:
Нужно ли регулировать новый карбюратор скутер

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

ЧАСТОТНЫЕ ПРЕОБРАЗОВАТЕЛИ

Применение частотных преобразователей

Самыми распространенными электрическими двигателями для различных устройств в настоящее время являются трехфазные асинхронные двигатели переменного тока.

Большое распространение такие приводы получили благодаря своим хорошим эксплуатационным характеристикам.

  • невозможность регулировки числа оборотов;
  • большие пусковые токи.

Регулировка оборотов невозможна из-за принципа работы асинхронного двигателя, поскольку число оборотов жестко привязано к частоте питающей сети и конфигурации обмоток.

Частота сети — величина постоянная, а переключением обмоток можно получить только несколько значений оборотов. Асинхронные двигатели могут снижать свои обороты при увеличении нагрузки, но это уже нежелательное явление, с которым необходимо бороться.

Существует несколько разновидностей частотных преобразователей, но в настоящее время подавляющее большинство выполнено по схеме ШИМ контроллера.

Различие только в тонкостях регулирования, которое может осуществляться по скалярному методу – упрощенный вариант или по векторному методу. Векторный метод управления наиболее полный и позволяет осуществить все возможные алгоритмы работы.

  • стабильность оборотов при изменении нагрузки в широком диапазоне;
  • изменение количества оборотов;
  • обеспечение плавного пуска;
  • снижение нагрузок на электрическую сеть во время пуска;
  • возможность торможения.

ОБЛАСТИ ПРИМЕНЕНИЯ

Большое распространение частотные преобразователи получили в станочном оборудовании в машиностроении и иных областях обработки материалов, в том числе в качестве приводов прокатных станов.

Применение преобразователей для регулировки и поддержания заданных оборотов значительно упрощает кинематические схемы станков, тем самым повышая удобство работы и надежность.

Регулировка частоты вращения давно применяется в электротранспорте. Вместе с функцией электрического торможения и рекуперацией (возвратом электроэнергии в питающую сеть при торможении) применение частотных преобразователей выгодно еще значительным сокращением потребления энергии.

Частотные преобразователи с возможностью электрического торможения находят широкое применение в лифтовом хозяйстве.

Перспективно и быстро развивается применение регулируемых асинхронных двигателей в качестве приводов насосов. Возможность плавной регулировки оборотов в широком диапазоне позволяет избавиться от громоздкой и ненадежной запорной и регулирующей арматуры в насосных перекачивающих станциях и котельных.

Таким образом снижаются гидравлические потери при перекачке жидкости и резко падает расход электроэнергии. Дополнительным плюсом в частотном регулировании является возможность увеличения производительности насосов во время пиковой нагрузки.

Если рассматривать бытовые устройства, то чаще всего двигатели с частотным управлением встречаются в автоматических стиральных машинах.

Читайте так же:
Регулировка карбюратора к 171

ХАРАКТЕРИСТИКИ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ

Важнейшей характеристикой любого преобразователя является количество фаз и величина напряжения.

Подавляющее большинство частотных преобразователей рассчитаны на подключение в трехфазную сеть 220/380 В и позволяют получить на выходе те же три фазы, но с возможностью регулировки частоты и напряжения.

На втором месте по распространенности находятся устройства для подключения в однофазную сеть 220 В с преобразованием в три фазы 380 В. Такие устройства находят применение в быту для подключения промышленных трехфазных двигателей в однофазную бытовую сеть.

  • количество фаз;
  • величина напряжения;
  • мощность нагрузки;
  • диапазон регулировки частоты;
  • пределы изменения выходного напряжения.

Из дополнительных опций, которые присутствуют в хороших моделях устройств следует отметить возможность параллельной работы нескольких преобразователей, подключение нескольких двигателей, обратная связь для точной регулировки оборотов согласно заданной функции, наличие функции торможения и рекуперации.

Для осуществления перечисленных функций устройства снабжены несколькими аналоговыми и цифровыми выходами. Некоторые модели имеют стандартный интерфейс для подключения персонального компьютера. Многие модели оборудованы входом для подключения термодатчика.

Электродвигатели в большинстве для уменьшения нагрева оборудованы собственными крыльчатками для обдува корпуса.

При работе на низких оборотах эффективность крыльчатки падает в геометрической прогрессии. Для предотвращения перегрева обмоток и используется внешний термодатчик, который прерывает подачу питания на двигатель при критическом нагреве обмоток.

Подбор необходимого преобразователя по параметрам призван сократить финансовые расходы без снижения надежности при сохранении необходимой функциональности. Известно, что чем шире функциональность и больше мощность преобразователя, тем он дороже, причем стоимость растет непропорционально мощности, а несколько быстрее.

Мощность частотника должна с некоторым запасом перекрывать пиковую мощность подключенного электродвигателя. Следует учитывать, что максимальный ток асинхронные двигатели потребляют в момент пуска и при увеличении нагрузки на ротор. В зависимости от мощности двигателя, пусковой ток может превосходить номинальный в 3-5 раз.

Диапазон изменения частоты обычно имеет стандартную величину 1:10, но можно встретить дорогие модели с расширенным диапазоном. Обычно недорогие частотники со скалярным управлением работают с меньшим диапазоном. Более прогрессивные – векторные, теоретически не имеют верхнего предела изменения частоты. Их диапазон ограничен областью применения и стоимостью.

ПРОГРАММИРОВАНИЕ ЧАСТОТНОГО ПРЕОБРАЗОВАТЕЛЯ

Под программированием частотного преобразователя понимают установку режимов и алгоритмов работы в зависимости от требования. Процесс программирования всех типов устройств нереально описать в пределах одной статьи, но производители, по мере возможности упрощают этот процесс.

  • мини клавиатура или набор кнопок;
  • индикатор (цифровой или многострочный символьный);
  • интерфейсные входы для подключения внешних устройств, компьютера или клавиатуры.

Весь процесс подробно описан в сопроводительной документации. Там же приведена и схема коммутации с сетью и регулируемым двигателем. Правильное подключение является основой для дальнейшей работы. Даже не запрограммированный частотник при строгом соблюдении правил подключения может нормально работать на режиме, который установлен по умолчанию.

Схема управления преобразователем содержит в себе ключевые исполнительные элементы, согласующие устройства, которые управляются при помощи одного или нескольких микроконтроллеров, которые представляют собой миниатюрные процессоры.

Следовательно, для того, чтобы правильно запрограммировать устройство, нужно иметь немалый опыт и некоторую подготовку, поэтому лучше поручить такую работу профессионалам, в противном случае не исключена поломка как частотного преобразователя, так и исполнительного двигателя. Нельзя также исключать возможности аварии, как результата неправильных действий.

Наиболее совершенные модели позволяют выполнять программирование при помощи компьютера непосредственно из операционной системы Windows. Для этих целей вместе с устройством поставляется специализированная программа, которую необходимо инсталлировать на компьютер.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector