Personalcam.ru

Авто Аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические схемы подключения вентиляторов Газель

Электрические схемы подключения вентиляторов Газель

Варианты подключения электрического вентилятора на Газель.

Внимание! Все электрические схемы предоставляются «Как есть». Мы не несем никакой ответственности за любой возможный ущерб, связанный с их использованием и применением. Применение нижеприведенных электрических схем вы осуществляете на свой страх и риск! Большая часть схем является теоретической разработкой и на практике не опробована!

Наличие нескольких каналов управления по температуре дает довольно широкие возможности для конструирования системы охлаждения.

Так как установка вентилятора на Газель не является стандартной процедурой — возможно множество вариантов ее реализации. Поэтому если у вас возникнет потребность в каком-либо другом, не описанном ниже, варианте — пишите мне на почту trs123@mail.ru — помогу разработать ваш собственный вариант подключения, учитывающий наличие у вас конкретных запчастей и пожелания по функциональности. Схема этого варианта будет добавлена на эту страничку.

Так же присылайте отзывы по работе установленных и испытанных схем охлаждения — они будут опубликованы на специальной страничке для облегчения выбора и для избежания ошибок теми, кто идет за нами.

Рекомендации по монтажу дополнительной проводки вентиляторов.

  • Присоединяйте силовые провода к АКБ проводами с сечением не меньше чем у проводов вентиляторов.
  • Предохранители силовых проводов размещайте как можно ближе к точке присоединения к АКБ.
  • Реле удобно разместить на боковой поверхности кузова за правой фарой, ближе к АКБ.
  • Если минусовой провод является общим для обоих вентиляторов — его сечение должно быть не менее суммы сечений минусовых проводов обоих вентиляторов.
  • Для соединения проводов используйте клеммы и обжимные медные трубки, тщательно изолируйте соединения проводов.
  • Закрепите жгут проводов пластиковыми хомутами к кузову или существующим жгутам во избежание перетирания изоляции об острые кромки при вибрации.
  • Дополнительные контакты типа «Лира» в разъем ЭБУ для выводов 25 и 33 можно извлечь из большинства разъемов проводки ГАЗ — разъемов форсунок, датчиков скорости, фазы, ДПКВ, ДПДЗ, РХХ, температуры, детонации..) Очень сложно — но можно.

Схема 1. Один основной вентилятор.

IMG_4787

Простейшая схема для подключения. В этом случае температура включения вентилятора определяется лягушкой или ЭБУ с 33 или 25 контакта. Вентилятор является основным и работает только на полную мощность.

Если вы установили на радиатор два вентилятора — то можно добавить аналогичную схему для обслуживания второго вентилятора, взяв сигнал управления со свободного вывода (лягушка, 33 или 25 контакт ЭБУ).

Этим будет обеспечена повышенная надежность системы охлаждения (при выходе из строя одного вентилятора другой оставшийся справится с охлаждением), а так же возможность включения вентиляторов при разных температурах (например с лягушки Вентилятор1 включается при 88 градусах, а с 33 контакта ЭБУ Вентилятор2 включается при 92 градусах). При одновременной работе двух вентиляторов будет двойная эффективность охлаждения — можно на Дакар ехать и смело буксовать.

Вариант 2. Последовательное подключение двух вентиляторов.

IMG_4788

Так же простая схема на одном реле. В предыдущую схему последовательно первому добавляется еще один вентилятор. Именно такой вариант подключения на моей Газели. Вентиляторы включаются оба одновременно на пониженной скорости и вращаются примерно в 3-4 раза медленней чем обычный вентилятор (зависит от добавочного вентилятора — чем меньше его мощность, тем медленнее будут вращаться оба вентилятора).

Данная схема испытана на протяжении всего лета 2015 — при вращении двух вентиляторов на малой скорости проблем с перегревом не возникло ни разу. Правда замечу, что в жаркую погоду они вообще не выключались.

Несомненным плюсом включения вентиляторов на малой скорости является малый скачок тока в цепи при пуске, а так же в 2 и более раз меньшее потребление тока при работе, что не приводит к перегреву и выходу из строя моторов вентиляторов. Низкий уровень шума тоже радует.

Два 8-лопастных вентилятора от ВАЗ — на мой взгляд лучший выбор для этой схемы. Почти уверен — при вращении на половине скорости (именно так они будут вращаться при подключении последовательно) для нормального охлаждения Газели их будет более чем достаточно.

Вариант 3. Двухскоростной вентилятор.

IMG_4790

В этом случае используется схема с двумя последовательно включенными вентиляторами, которая обеспечивает плавное включение и охлаждение в мягком режиме с возможностью включения мощного режима. Первый уровень включения управляется реле 1 с контакта 33 ЭБУ. При необходимости включить систему охлаждения в мощном режиме на дополнительное реле 2 подается сигнал включения с контакта 25 ЭБУ (Управление реле кондиционера).

При этом основной вентилятор 2 из медленного вращения перейдет в быстрое вращение, а дополнительный вентилятор 1 перестанет вращаться.

При использовании двух аналогичных вентиляторов эта схема выигрыша по эффективности охлаждения не дает.

Правильней в этой схеме применить в качестве дополнительного вентилятор менее мощный, чем основной. Так же хороший результат даст применение вместо дополнительного вентилятора подходящего резистора (например типа резистора печки). Мощность можно оценить по сопротивлению обмотки вентилятора. Выбирайте дополнительный вентилятор или дополнительный резистор с сопротивлением 2-3 Ома на ток 5-7 Ампер.

В результате мы получаем плавный пуск вентилятора в режиме мягкого охлаждения на 30-50 процентах скорости вращения, а при необходимости будет включаться максимально мощный режим без резкого скачка тока в момент пуска, так как основной вентилятор уже вращается.

Данный вариант мной не опробован, но при удобном случае именно его я его поставлю на свою машину.

Для включения управляющих выводов 25 и 33 возможно будет необходимо перепрограммировать ЭБУ. О подготовке ЭБУ здесь…

Как настроить скорость вентиляторов в ПК

 Как настроить скорость вентиляторов в ПК

Современная компьютерная техника для охлаждения системы самостоятельно регулирует обороты вентиляторов. Однако, в большинстве случаев, чтоб добиться комфортного соотношения эффективности и шума, лучше это выполнить в ручном режиме.

О способах регулирования оборотов корпусных вентиляторов и процессорного охлаждения мы сегодня и поговорим.

Читайте так же:
Настройка регулировка полуавтомат сварочный аврора про оверман

Зачем нужна регулировка вентиляторов?

Изначально параметры работы вентиляторов устанавливаются материнской платой в зависимости от показателей температурных датчиков и настроек BIOS.

Но не всегда автоматическая система эффективно справляется со своими функциями. Чаще всего это один из следующих сценариев:

  • Разгон компонентов системы.
  • Постоянная работа компьютера на повышенных нагрузках.
  • Замена кулеров на более мощные.
  • Изменение климата помещения.
  • Устаревшая система охлаждения.
  • Компьютер давно не чистили.

Если причиной чрезмерной работы кулеров является перегрев системы из-за жары или загрязнения системы пылью, вручную уменьшать обороты вентиляторов нельзя. Для начала следует выполнить чистку и обслуживание компьютера. Возможно понадобится заменить термопасту на процессоре. Если устройство давно не обслуживалось, эти манипуляции позволят снизить температуру рабочих узлов на 10 – 15 °С.

В случае разгона, следует уделять повышенное внимание рабочим температурам компонентов системы и своевременно принимать меры по их регулировке. Чрезмерный перегрев чреват выходом из строя разогнанных комплектующих. Если же перегрева не наблюдается, а кулеры работают на максимальных оборотах, это приводит к лишнему энергопотреблению и шумовой нагрузке.

В остальных случаях, если перегрева системы нет, а вентиляторы работают на полную мощность, выполняя более 2000 – 3000 тысяч оборотов в минуту, следует изменить параметры их работы вручную.

Сделать это можно тремя способами.

Настройка через BIOS

Перейти в BIOS можно, нажав соответствующую кнопку клавиатуры при запуске компьютера. В зависимости от модели материнской платы, это может быть F2 или Del.

Обычно раздел настройки вентиляторов находится на стартовой странице и называется «Fan Control». В разделе можно найти 3 типа устройств:

  • CPU FAN – процессорный вентилятор.
  • Chassis FAN или CHA FAN – корпусные вентиляторы.
  • AUX FAN – порты для подключения дополнительных вентиляторов. Их управление выполняется выносными регуляторами, а материнская плата только обеспечивает питание.

Возле названия каждого вентилятора указываются его обороты. Чтоб перейти к настройке, следует выбрать устройство.

Обычно настройка процессорного вентилятора реализована в виде графика, к которому предлагаются базовые режимы: Silent, Standart, Turbo или другие, на усмотрение производителя. А также ручной режим – Manual или Custom.

Для регулировки следует передвигать контрольные точки графика. Однако, полностью выставлять производительность вентилятора на минимальные значения не рекомендуется, особенно при настройке процессорного охлаждения. График должен иметь вид плавной кривой, в которой температуре 30 °С должна соответствовать минимальная скорость вентилятора, а 80 °С – максимальная. Если возможно – проверьте эффективность охлаждения в максимальной нагрузке. Из-за особенностей как самих вентиляторов, так и радиаторов разницы в эффективнойсти охлаждения между 85% скорости и 100% может и не быть, а вот шума прибавится ощутимо. Тест стоит проводить не менее 10 минут по длительности – за это время система выйдет на уровень температурной стабильности. Речь конечно-же о воздушных и 240-мм жидкостных системах. При использовании 360 и более габаритных радиаторов прогрев до состояния равновесия может занять до получаса.Промежуточные значения выбирайте исходя из параметров системы, оценивая каждый показатель и подбирая необходимое значение практическим путем под нагрузкой.

Настройка корпусных вентиляторов редко реализована визуально. Обычно предлагается вводить мощность в процентах на каждый из трех режимов работы: Min, Middle, и Max.

Регулировка при помощи утилиты SpeedFan

SpeedFan – самое популярное бесплатное приложение с русскоязычным интерфейсом. Среди его функций:

  • Определение степени загрузки процессора и каждого ядра.
  • Контроль температур основных компонентов ПК.
  • Мониторинг рабочих параметров системы.
  • Управление скоростями вентиляторов.

Программа позволяет регулировать обороты каждого вентилятора, подключенного к материнской плате, параллельно оценивая, как изменяется температура на датчиках. Можно задать необходимые уровни температур, и система будет автоматически подстраивать частоту оборотов кулеров. Также можно выставить автоматический режим. Для этого следует поставить галочку в строке Automatic fan speed (Автоскорость вентиляторов).

В большинстве случаев, если вентиляторы подключены напрямую к блоку питания, их можно регулировать только физически.

Физическая регулировка

Для управления скоростями работы вентиляторов используют специальный многоканальный регулятор скорости – реобас. Он монтируется в системный блок или на переднюю панель. Также можно встретить внешние устройства, которые закрепляются на корпусе при помощи магнитов или липучек.

В зависимости от конфигурации, реобас может выполнять сразу несколько функций:

  • Увеличивать количество разъемов для подключения кулеров.
  • Регулировать рабочие параметры вентиляторов: скорость вращения, потребляемая энергия.
  • Контролировать температурный режим системы.
  • Визуализировать показатели работы кулеров и системы.

Выбирают реобас по ряду характеристик:

  • Тип управления: ручной или автоматический.
  • Функционал.
  • Количество подключаемых вентиляторов.
  • Количество термодатчиков.
  • Наличие дисплея.

Самые простые реобасы будут показывать скорость только одного кулера, передавая значения на датчик материнской платы. С остальных кулеров показания не снимаются.

Некоторые топовые модели могут быть оснащены микрофонами и способны автоматически настраивать режим работы системы охлаждения в соответствии с шумовым фоном помещения.

Введение

Компактные электрические вентиляторы, благодаря невысокой цене, используются для охлаждения оборудования уже больше полувека. Тем не менее только в последние годы технологии управления вентиляторами стали значительно развиваться. В этой статье описано как и почему это развитие имело место быть и предложены некоторые полезные решения для разработчиков.

Тепловыделение и охлаждение

Один из трендов электроники — это создание компактных устройств, обладающих богатой функциональностью. Поэтому большинство электронных компонентов приобретают все меньшие размеры. Один из очевидных примеров — современные ноутбуки. Толщина и вес ноутбуков значительно уменьшается, но потребляемая мощность остается прежней или увеличивается. Другой пример — проекционные системы и телевизионные ресиверы.

В ноутбуках большая часть тепла выделяется процессором, в проекторе — источником света. Это тепло необходимо бесшумно и эффективно удалять из системы. Самый тихий способ избавления от тепла — это использование пассивных охлаждающих компонентов, таких как радиаторы или тепловые трубки. Однако для многих популярных пользовательских устройств такой способ неэффективен и дорог.

Другой способ удаления тепла — это активное охлаждение с использованием вентиляторов, создающих поток воздуха вокруг нагревающихся компонентов. Однако вентилятор являются источником шума и, кроме того, увеличивает суммарное энергопотребление устройства, что может быть критично при питании от аккумулятора. Также добавление вентилятора увеличивает количество механических компонентов в системе, что отрицательно сказывается на надежности изделия.

Читайте так же:
Регулировка производительности мембранного насоса

Контроль скорости вращения вентилятора позволяет уменьшить описанные недостатки. Поскольку запуск вентилятора на меньших оборотах снижает шум и энергопотребление и увеличивает срок его службы.

Существует несколько типов вентиляторов и способов их контроля. Один из вариантов классификации вентиляторов может быть таким:

1. 2-х проводные вентиляторы
2. 3-х проводные вентиляторы
3. 4-х проводные вентиляторы

Методы управления вентиляторами, обсуждаемые в этой статье, такие:

1. управление отсутствует
2. on/ff управление
3. линейное управление
4. низкочастотная широтно-импульсная модуляция (ШИМ, PWM)
5. высокочастотное управление

Типы вентиляторов

2-х проводные вентиляторы имеют только выводы питания — плюс и земля. В 3-х проводных вентиляторах добавляется тахометрический выход. На этом выходе присутствует сигнал, частота которого пропорциональна скорости вращения вентилятора. 4-х проводные вентиляторы, помимо выводов питания и тахометрического выхода, имеют вход управления. На этот вход подается ШИМ сигнал и ширина импульса этого сигнала определяет скорость вращения вентилятора.

2-х проводными вентиляторами можно управлять регулируя напряжение питания или скважность ШИМ сигнала. Однако без тахометрического сигнала невозможно понять на сколько быстро вентилятор вращается. Такая форма управления скоростью вращения вентилятора называется открытым контуром (open-loop).

3-х проводными вентиляторами можно управлять аналогичным образом, но в этом случае у нас есть обратная связь. Можно анализировать тахосигнал и устанавливать требуемую скорость. Такая форма управления называется закрытым контуром (closed-loop).

Если управлять вентилятором регулируя напряжение питания, тахосигнал будет иметь форму меандра. И в этом случае тахосигнал будет всегда валидным, пока на вентиляторе есть напряжение. Такой сигнал показан на рисунке 1 (ideal tach).

При управлении вентилятором с помощью ШИМ — ситуация сложнее. Тахометрический выход вентилятора обычно представляет собой открытый коллектор. Поэтому тахосигнал будет валидным только при наличии напряжения на вентиляторе (on фаза ШИМ сигнала), а при отсутствии (off фаза) он будет подтягиваться к высокому логическому уровню. Таким образом тахосигнал становится «порубленным» управляющим ШИМ сигналом и по нему уже нельзя достоверно определять скорость вращения. Этот сигнал показан на рисунке 1 (tach).

Рисунок 1. Идеальный тахосигнал и тахосигнал при внешнем ШИМ управлении.

Для решения данной проблемы, необходимо периодически включать вентилятор на такой отрезок времени, который позволит получить несколько достоверных циклов тахосигнала. Такой подход реализован в некоторых контроллерах фирмы Analog Device, например в ADM1031 и ADT7460.

4-х проводные вентиляторы имеют ШИМ вход, который управляет коммутацией обмоток вентилятора к плюсовой шине источника питания. Такая схема управления не портит тахосигнал, в отличии от стандартной, где используется внешний ключ и коммутируется отрицательная шина. Переключение обмоток вентилятора создает коммутационный шум. Чтобы «сдвинуть» этот шум за пределы звукового диапазона частоту ШИМ сигнала обычно выбирают больше 20 кГц.

Еще одно преимущество 4-х проводных вентиляторов — это возможность задания низкой скорости вращения — до 10% от максимальной скорости. На рисунке 2 показана разница между 3-х и 4-х проводными вентиляторами.

Рисунок 2. 3-х и 4-х проводные вентиляторы

Управление вентилятором

Управление отсутствует

Простейший метод управления вентилятором — отсутствие какого-либо управления вообще. Вентилятор просто запускается на максимальной скорости и работает все время. Преимущества такого управления — гарантированное стабильное охлаждение и очень простые внешние цепи. Недостатки — уменьшение срока службы вентилятора, максимальное энергопотребление, даже когда охлаждение не требуется, и непрерывный шум.

On/off управление

Следующий простейший метод управления — термостатический или on/off. В этом случае вентилятор включается только тогда, когда требуется охлаждение. Условие включения вентилятора устанавливает пользователь, обычно это какое-то пороговое значение температуры.

Подходящий датчик для on/off управления — это ADM1032. Он имеет выход THERM, который управляется внутренним компаратором. В нормальном состоянии на этом выходе высокий логический уровень, а при превышении порогового температурного значения он переключается на низкий. На рисунке 3 показан пример цепи с использованием ADM1032.

Рисунок 3. Пример on/off управления

Недостаток on/off контроля — это его ограниченность. При включении вентилятора, он запускается на максимальной скорости вращения и создает шум. При выключении он полностью останавливается и шум тоже прекращается. Это очень заметно на слух, поэтому с точки зрения комфорта такой способ управления далеко не оптимальный.

Линейное управление

При линейном управлении скорость вращения вентилятора изменяется за счет изменения напряжения питания. Для получения низких оборотов напряжение уменьшается, для получения высоких увеличивается. Конечно, есть определенные границы изменения напряжения питания.

Рассмотрим, например, вентилятор на 12 вольт. Для запуска ему требуется не меньше 7 В и при этом напряжении он, вероятно, будет вращаться с половинной скоростью от своего максимального значения. Когда вентилятор запущен, для поддержания вращения требуется уже меньшее напряжение. Чтобы замедлить вентилятор, мы можем понижать напряжение питание, но до определенного предела, допустим, до 4-х вольт, после чего вентилятор остановится. Эти значения будут отличаться в зависимости от производителя, модели вентилятора и конкретного экземпляра.

5-и вольтовые вентиляторы позволяют регулировать скорость вращения в еще меньшем диапазоне, поскольку их стартовое напряжение близко к 5 В. Это принципиальный недостаток данного метода.

Линейное управление вентилятором можно реализовать на микросхеме ADM1028. Она имеет управляющий аналоговый выход, интерфейс для подключения диодного температурного датчика, который обычно используется в процессорах и ПЛИС, и работает от напряжения 3 — 5.5 В. На рисунке 4 показан пример схемы для реализации линейного управления. Микросхема ADM1028 подключается ко входу DAC.

Рисунок 4. Схема для реализации линейного управления 12-и вольтового вентилятора

Линейный метод управления тише, чем предыдущие. Однако, как вы могли заметить, он обеспечивает маленький диапазон регулировки скорости вращения вентилятора. 12-и вольтовые вентиляторы при напряжении питания от 7 до 12 В, позволяют устанавливать скорость вращения от 1/2 от максимума до максимальной. 5-и вольтовые вентиляторы при запуске от 3,5 — 4 В, вращаются практически с максимальной скоростью и диапазон регулирования у них еще меньше. Кроме того, линейный метод регулирования не оптимален с точки зрения энергопотребления, потому что снижение напряжения питания вентилятора выполняется за счет рассеяния мощности на транзисторе (смотри рисунок 4). И последний недостаток — относительная дороговизна схемы управления.

Читайте так же:
Лампа накаливания регулировка по току

ШИМ управление

Наиболее популярный метод управления скоростью вращения вентилятора — это ШИМ управление. При таком методе управления вентилятор подключается к минусой шине питания через ключ, а на управляющий вход ключа подается ШИМ сигнал. В данном случае к вентилятору всегда приложено либо нулевое, либо рабочее напряжение питания и не возникает таких энергопотерь, как при линейном методе управления. На рисунке 5 показана типовая схема реализующая ШИМ управление.

Рисунок 5. ШИМ управление.

Преимущество данного метода управления — простота реализации, дешевизна, эффективность и широкий диапазон регулирования скорости вращения. Однако недостатки у этого метода тоже есть.

Один из недостатков ШИМ управления — это «порча» тахосигнала. Этот недостаток можно устранить, используя так называемую pulse stretching технику, то есть удлиняя импульс ШИМ сигнала на несколько периодов тахосигнала. Конечно, при этом скорость вращения вентилятора может немного увеличится. На рисунке 6 показан пример.

Рисунок 6. Удлинение импульса для получения информации о скорости вращения.

Другой недостаток ШИМ управления — это коммутационный шум. Во-первых коммутация индуктивной нагрузки вызывает появление помех в цепях питания, во-вторых может возникать акустический шум — пищание, жужжание. Электрические шумы подавляют фильтрами, а для борьбы с акустический шумом частоту ШИМ сигнала поднимают до 20 кГц.

Также стоит снова упомянуть о 4-х проводных вентиляторах, в которых схема управления уже встроена. В таких вентиляторах коммутируется плюсовая шина питания, что помогает избежать проблем с тахосигналом. Одна из микросхем, предназначенных для реализации ШИМ управления 4-х проводными вентиляторами, — это ADT7467. Условная схема приведена на рисунке 7.

Рисунок 7. Схема ШИМ управления 4-х проводным вентилятором

Заключение

Подводя итоги можно сказать, что наиболее предпочтительный метод управления вентилятором — это высокочастотное ШИМ управление, реализованное в 4-х проводных вентиляторах. При таком управлении отсутствует акустический шум, значительные энергопотери и проблемы с тахосигналом. Кроме того, он позволяет менять скорость вращения вентилятора в широком диапазоне. Схема ШИМ управления с коммутацией отрицательной шины обладает практически теми же достоинствами и является более дешевой, но портит тахосигнал.

Разветвители для вентиляторов и безопасность комплектующих — как подключить много вентиляторов и не спалить материнскую плату

Несомненно, когда пользователь ПК обладает весьма ограниченным бюджетом при выборе материнской платы, ему приходится идти на компромиссы между ценой платы, качеством и функционалом. Энтузиасты обращают внимание на подсистему питания процессора и возможности разгона, простым пользователям больше интересен дизайн платы, для кого-то важным критерием является компактность материнской платы. Но многие ли из нас обращают внимание на количество 3-pin и 4-pin разъемов при выборе материнской платы, является ли этот критерий для кого-то решающим при покупке? Думается, что для большинства, чей бюджет ограничен 100 — 120 долларами, данный критерий отнюдь не на первом месте.

реклама

И вот, мы находим идеальную материнскую плату, допустим, как это было в моем случае — ASUS TUF B450M-Pro Gaming. Отличная плата с неплохим за свою цену «питальником», способным без труда справиться с каким-нибудь Ryzen 9 3900X, с удобным и понятным BIOS и качеством исполнения на весьма высоком уровне. Но в жаркое лето обостряется проблема высоких температур комплектующих ПК и вопрос продуваемости корпуса становится как никогда актуальным. И тут неожиданно выявляется серьезный недостаток данной материнской платы, можно сказать типовой для компактных материнских плат и «бюджетных досок» — малые возможности для обеспечения должной продуваемости корпуса. Ведь что такое три разъема 4-pin на плате? Это питание для вентилятора процессорного кулера и еще двух корпусных вентиляторов, обычно располагающихся на вдув и на выдув.

Но плата ведь оверклокерская, позволяющая неплохо разгонять даже восьмиядерные процессоры. И для хорошего разгона с сохранением комфортных температур и приемлемого уровня шума двумя корпусными вентиляторами просто так не обойтись. Желательно иметь «двухголовую» башню с двумя вертушками, такую как GELID Phantom, недорогую и отлично подходящую для охлаждения процессоров Ryzen 3000 серии, в том числе и Ryzen 9 3900X с небольшим андервольтом.

реклама

И вот, после покупки хорошей башни оказывается, что для подключения корпусных вентиляторов в нашей плате остается лишь один разъем. Естественно, ни о каком оверклокинге летом не может быть и речи, когда имеется достаточно горячий процессор, мощная видеокарта и всего один корпусный вентилятор.

Конечно, можно использовать открытый стенд, располагая его прямо под кондиционером или открытым окном, но такое решение ведет к возрастанию рисков, связанных с безопасностью комплектующих.

Достаточно банальным решением среди энтузиастов и любителей будет покупка дешевого разветвителя, позволяющего в один разъем подключать сразу несколько вентиляторов. Но насколько это безопасно — давайте выясним.

Использование разветвителей для вентиляторов — экспертное мнение представителей Asus, MSI и GIGABYTE

реклама

Официальные представители крупных вендоров однозначно против использования хабов и разветвителей для подключения большого числа вентиляторов к одному разъему питания на материнской плате. Категорически не рекомендуется превышать силу тока в 1 ампер на разъем для подключения вентиляторов, это может повредить вашей материнской плате, так как есть вероятность того, что дорожки на текстолите платы просто сгорят и это не будет являться гарантийным случаем.

Ответ представителя GIGABYTE
Ответ представителя MSI

Мнение же представителей ASUS таково, что использование различных хабов и переходников может привести к некорректной работе функций мониторинга и автоматической регулировки скорости вращения вентиляторов.

Читайте так же:
Как изготовить прибор для регулировки форсунок
реклама

Выяснив официальное мнение представителей различных вендеров, стоит перейти от теории к практике и выбрать правильные разветвители, которые не нанесут вреда комплектующим, материнской плате в частности.

Практика выбора безопасных разветвителей для вентиляторов

Итак, разберемся с типичным представителем потенциальных «убийц» материнских плат. На картинке представлен крайне «плохой» разветвитель для вентиляторов, судя по всему китайского производства. «Плохим» данное изделие делает то, что такой разветвитель дает возможность подключить сразу 5 вентиляторов к одному разъему 4-pin. Вполне возможно, что если эти вентиляторы будут работать на минимальных оборотах и все они будут являться крайне слабыми, то большого вреда данный продукт не принесет вашей материнской плате. Но если вы подключите в разветвитель 5 мощнейших вентиляторов и заставите их работать на максимальных оборотах, то у вас будут все шансы довольно быстро отправить и без того бюджетную материнскую плату на тот свет, так как, уверяю вас, сила тока составит гораздо больше 1 ампера.

Убедительная просьба: остерегайтесь подобных решений и не повторяйте данных экспериментов с дешевыми разветвителями.

Теперь, когда читатель достаточно «напуган» подобными решениями, нам предстоит выбрать безопасные и достойные разветвители для того, чтобы наладить эффективную циркуляцию воздуха внутри корпуса даже с компактной и бюджетной материнской платой без большого числа разъемов для подключения вентиляторов.

Относительно неплохим решением будет использовать что-то вроде Y-разветвителя, такого как Noctua NA-SYC2, по крайней мере, возможность подключить лишь два вентилятора к одному разъему не навредит вашей материнской плате, если данные вентиляторы окажутся не самыми мощными.

Самым правильным решением будет являться покупка разветвителя с дополнительным питанием MOLEX. Типичным представителем такого разветвителя является GELID Solutions PWM (CA-PWM-03).

Также отличным решением будет покупка реобаса. Но если вы экономите на материнской плате, то вряд ли у вас найдется несколько тысяч рублей на реобас. Да и не каждый современный корпус предусматривает установку регулятора скорости вращения вентиляторов. Хотя, даже если в вашем корпусе не предусмотрен отсек 5,25″, существуют современные реобасы, которые рассчитаны под новые корпуса, но обойдутся вам такие решения существенно дороже. А с другой стороны, зачем отказывать себе в комфорте? Не проще ли купить одну качественную вещь, способную радовать вас долгие годы?

Заключение

Предлагаю подытожить вышесказанное: первое, комплексно подходите к выбору материнской платы, обращайте внимание на количество разъемов для подключения вентиляторов, стоит всегда помнить, что скупой платит дважды и иногда стоит переплатить за возможность подключения не трех, пяти вентиляторов, выбрав полноразмерную и более продуманную модель материнской платы; второе, если вы все-таки промахнулись с выбором материнской платы, самым бюджетным, но безопасным способом подключения дополнительных вентиляторов будет являться покупка разветвителя с дополнительным питанием MOLEX или SATA; третье, если вы хотите навсегда решить проблему с малым количеством разъемов для вентиляторов на материнской плате, вам стоит приобрести реобас, который подарит вам комфорт от пользования ПК, благодаря тонкой настройке вентиляторов под собственные предпочтения.

А пользуетесь ли вы разветвителями для вентиляторов и сколько вентиляторов в вашем системном блоке?

Технологии ремонта и обслуживания гибридных автомобилей. Школа Сергея Гордеева. Урок 19

Технологии ремонта и обслуживания гибридных автомобилей. Школа Сергея Гордеева. Урок 19

Прошлый урок мы заканчивали так: «Причиной раздутых элементов и вышедших строя элементов часто является забитый или неисправный вентилятор охлаждения ВВБ. Соответственно, он требует к себе особого внимания. Располагается он в заднем левом крыле автомобиля. Проверить работоспособность вентилятора можно сканером в режиме активных тестов исполнительных механизмов».

Теперь к уроку 19.

Работоспособность электромотора не является признаком исправности системы охлаждения. Обязательно необходимо оценить степень загрязненности крыльчатки вентилятора. Разбирать что-либо для проверки крыльчатки при ремонте ВВБ нет необходимости, так как воздуховод уже будет снят. Вентилятор можно осмотреть невооруженным глазом.

При наличии любых отложений на крыльчатке ее необходимо очистить. Если при проверке самого вентилятора включаются не все скорости вращения – это говорит о неисправности транзистора, отвечающего за регулировку скорости вращения.

Фото 41. Выбор скорости вращения вентилятора охлаждения ВВБФото 41. Выбор скорости вращения вентилятора охлаждения ВВБ Фото 42. Вентилятор охлаждения ВВБФото 42. Вентилятор охлаждения ВВБ

На самом деле это малораспространенная неисправность. Чаще всего его просто забывают подключить. Сам транзистор находится в воздуховоде охлаждения ВВБ. Крепление жгута проводов закрывает разъем транзистора, и поэтому он остается неподключенным.

Основные нюансы мы разобрали. Что делать после того как ВВБ установлена в автомобиль?

Вставляем на место размыкатель и надеваем клемму на вспомогательный аккумулятор. Подключаем сканер и включаем зажигание. Если все собрано правильно – никаких значков неисправностей на панели и мониторе быть не должно (в отличие от Prius 10). Инициализацию блока управления высоковольтной батареей проводить нет необходимости, так как она уже выполнена (сбросом питания с блока управления ВВБ). Для проверки заходим в дату блока управления ВВБ и проверяем значение Delta SOC. Если видим 20% – значит, можно переходить к эквализации. Меньше 20% этот параметр быть не может. Если все же он больше 20%, то ремонт ВВБ выполнен неправильно.

Фото 43. Транзистор, отвечающий за регулировку скорости вра- щения вентилятора ВВБФото 43. Транзистор, отвечающий за регулировку скорости вра- щения вентилятора ВВБ Фото 44. Расположение разъема транзистораФото 44. Расположение разъема транзистора

Стоит отметить, что пункт «инициализация» из прошивки блока управления ВВБ не удален, а вполне активен. Это значит, что скинуть значение Delta SOC можно, не выходя из автомобиля. Для этого достаточно на 30 секунд выключить зажигание. Процесс достаточно простой, поэтому не будем на нем останавливаться.

Как запустить процесс эквализации? Для этого выбираем пункт «Onboard equalizing charge» прямо в основном меню блока управления батареей. В открывшемся окне мы видим название выбранной процедуры, и ее предназначение – зарядка ВВБ для выравнивания уровня заряда элементов.

Жмем «Enter» и переходим к следующему окну, в котором расписаны условия, при которых возможен успешный запуск процесса. Всего их пять.

Читайте так же:
Сервер синхронизации времени для андроида

1. Автомобиль включен (горит надпись «READY» на панели приборов).

2. Рычаг положения КПП переведен в режим парковки.

3. Температура элементов ВВБ находится в пределах от 10 до 45 °С выше нуля.

4. Разница между показаниями температурных датчиков элементов не должна составлять более 2 °С. Это тот самый случай, когда не получится запустить эквализацию из-за незафиксированного датчика температуры на элементе.

5. Уровень заряда батареи SOC ниже 70%.

Проверяем, что у нас выполняются все перечисленные условия, и жмем на «Next». В следующем окне увидим небольшую инструкцию. Она сообщает, что процесс эквализации сейчас будет запущен. По времени он может занимать около 30 минут. По окончании процесса эквализации бензиновый двигатель остановится и потоки энергии на мониторе от двигателя к ВВБ прекратятся. После этого необходимо выключить автомобиль и оставить его с включенным зажиганием на 10 минут для охлаждения ВВБ.

Фото 45. Меню выбора инициализации и эквализацииФото 45. Меню выбора инициализации и эквализации Фото 46. Первое окно при запуске эквализацииФото 46. Первое окно при запуске эквализации

Далее жмем Next и видим надпись о том, что процедура выполнена успешно. Первым признаком того, что эквализация включилась, будет являться работа вентилятора охлаждения ВВБ на максимальной скорости вне зависимости от показания датчиков температуры. Вторым признаком – не останавливающаяся зарядка (зарядка не отключается) ВВБ даже на 75% уровне заряда.

По окончании эквализации двигатель действительно остановится (если не включен кондиционер). Дальше по инструкции мы должны выключить автомобиль и включить зажигание. Не рекомендую этого делать, так как пока мы не выключили автомобиль, вентилятор охлаждения батареи продолжает работать на полную мощность, несмотря на окончание процесса эквализации. Как только мы выключим-включим зажигание, скорость вращения вентилятора вновь будет привязана к показаниям температурных датчиков. Летом в жаркую погоду температура элементов может значительно возрасти. В этом случае лучше всего закрыть все окна и двери прямо в процессе эквализации и запустить систему кондиционирования на максимальную мощность.

После завершения эквализации оставьте работать автомобиль до тех пор, пока температура элементов не упадет до 45 °С. В таком случае охлаждение будет более эффективным и позволит провести проверку нашей работы в движении. Если температура элементов будет больше 50 °С, то смысла проводит проверку на ходу нет – мощность отдачи высоковольтной батареи будет ограничена, и мы не увидим реальную картину состояния элементов под нагрузкой.

Фото 47. Условия запуска эквализацииФото 47. Условия запуска эквализации Фото 48. Инструкция к эквализацииФото 48. Инструкция к эквализации

Не забывайте, что процесс может быть достаточно длительным. Двигатель внутреннего сгорания при этом будет работать под нагрузкой. А значит, вы должны быть уверены в трех составляющих: во-первых, система охлаждения двигателя исправна. То есть вентиляторы включатся в нужный момент и охладят радиатор; уровень охлаждающей жидкости в норме; помпа работает.

Во-вторых, количество топлива в баке позволит автомобилю работать длительное время без прекращения подачи топлива. Часто бывает, что клиенты приезжают с горящей лампочкой низкого уровня топлива.

В-третьих, вытяжка выхлопных газов подключена и помещение проветривается, либо автомобиль находится на улице. После охлаждения элементов до 45 °С выключаем автомобиль. Включаем снова и отправляемся на проверку.

Теперь рассмотрим высоковольтную батарею, установленную на Toyota Estima в 10-м кузове. Батарея находится прямо под третьим рядом сидений. Сверху она закрыта большим металлическим кожухом и обшивкой, поэтому догадаться о том, что там установлена батарея, достаточно сложно.

Размыкатель находится в задней левой части ВВБ. (Устройство, принцип работы – все как в Prius в 11-м кузове, если кто-то подзабыл предыдущий урок.) Для того чтобы вынуть размыкатель, не разбирая салон автомобиля, в металлическом кожухе сделано технологическое отверстие, закрытое резиновой шторкой. Чтобы его найти, необходимо открыть дверку багажника, вытащить пол багажника, скрывающий набор инструментов и домкрат, вытащить левую подложку. За левой подложкой рядом с предупреждающей наклейкой расположена шторка, скрывающая размыкатель.

Фото 49. Расположение батареи в EstimaФото 49. Расположение батареи в Estima Фото 50. Размыкатель за шторкойФото 50. Размыкатель за шторкой

Справа от размыкателя такой же разъем с заглушкой для подключения зарядного устройства ВВБ.

Под третьим рядом сидений ближе к передней части автомобиля расположены вентиляционные решетки для охлаждения батареи. Ни в коем случае их нельзя ничем закрывать. К сожалению, не все автовладельцы об этом знают.

Именно с этих решеток продолжаем разборку салона автомобиля, чтобы демонтировать ВВБ. Крепятся они только на клипсах и закрывают собой болты крепления заднего дивана. Демонтировав решетки, откручиваем сиденье третьего ряда и продвигаем его вперед по салону, предварительно сдвинув второй ряд сидений до упора вперед. Вытаскивать задний диван из салона необязательно.

Фото 51. Разъем для зарядкиФото 51. Разъем для зарядки Фото 52. Вентиляционные решеткиФото 52. Вентиляционные решетки Фото 53. Сложенный задний диванФото 53. Сложенный задний диван Фото 54. Снимаем кожухФото 54. Снимаем кожух

Дальше откручиваем пластиковые заглушки, скрывающие под собой кронштейны для крепления заднего сиденья. Снимаем решетки обдува ног пассажиров задних сидений (если комплектация с задним отопителем). Затем вытаскиваем ковровое покрытие из-под боковых панелей и вытягиваем его назад. Клипсы крепления к кожуху можно не снимать.

Затем откручиваем все болты крепления металлического кожуха по кругу. Воспользовавшись размыкателем, снимаем две оранжевые клипсы и вытаскиваем кожух из автомобиля.

Обратите внимание, что болты крепления кожуха и третьего ряда сидений выходят прямо на улицу. А значит, они постоянно корродируют. Для исключения повреждения резьбы обязательно пользуйтесь смазкой при установке болтов на место. Этим вы сэкономите свое время либо время другого мастера при последующей разборке ВВБ.

Также стоит обратить внимание на верхние кронштейны, к которым прикручивается металлический кожух. В месте крепления кронштейнов к кузову часто образуются трещины, в которые попадает вода с колесных арок. Возможно, потребуется их герметизация.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector