Personalcam.ru

Авто Аксессуары
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как регулировать мощность переменного тока

Как регулировать мощность переменного тока

Решил как-то отец собрать для дачи некое устройство, в котором, по его заверению, можно будет варить сыр. Устройство сие вид имело могучий и представляло из себя железный короб, подозрительно напоминающий старую стиральную машинку. Внутрь короба (все также добротно!) были вмонтированы три тэна по 1700 Ватт каждый. В общем сыра должно было хватить на небольшой посёлок.

Изделие (внешне выглядящее как что-то из безумного макса), должно быть весьма технологичным и поддерживать заданную температуру в максимально узких пределах. Для этого рядом появилась ещё одна коробка с симисторами, к которым подключались ТЭНы и схема, выдающая высокий уровень при переходе синусоиды через ноль. А у меня появился интересный проект.

Итак нам нужно выходить на заданную температуру и поддерживать её, с этим должен справляться алгоритм ПИД регулятора. Глубоко вдаваться в его работу не буду, скажу лишь что он получает на вход текущую ошибку, а на выходе выдает какое-то число в заданных пределах. У меня таким числом будет мощность выдаваемая на ТЭН, хотя в принципе, это может быть любой инерционный процесс, например обороты двигателя. Что важно для ПИД регулятора, это чтобы выходная величина производила воздействие линейно. Поэтому попробуем разобраться в способах регулировки мощности и их линейности.

Как вообще регулируется мощность?

Мощность — это произведение силы тока на напряжение. Если представить это произведение графически, то для постоянного тока, это будет площадь прямоугольника со сторонами равными напряжению и току

Так как при постоянном сопротивлении и напряжении ток тоже будет постоянным, то заменим ось тока на ось времени. Сопротивление я беру постоянным для объяснения принципа регулирования.

Тогда при заданном напряжении (12 В) и сопротивлении в 12 Ом, по закону Ома: I=U/R, получаем ток равный 1 А, и соответственно мощность за единицу времени будет равна 12 Вт. При другом сопротивлении мощность, естественно тоже изменится.

Теперь, если мы хотим регулировать мощность за единицу времени, нам нужно как-то изменять площадь фигуры за единицу времени. Самым чистым способом будет просто изменять напряжение, тогда и мощность будет пропорционально изменяться. Но контроллер, как и любые цифровые устройства, не умеет плавно изменять напряжение на ножках, он может либо «поднимать» их до высокого уровня, либо «опускать» до низкого уровня. Этот недостаток он компенсирует скоростью, даже самый дохленький современный МК может работать на частотах в миллионы тактов в секунду. Чтобы регулировать мощность, контроллер будет очень быстро «дрыгать» ножкой, тем самым изменяя результирующая площадь импульса за единицу времени.

На этом принципе устроена широтно-импульсная модуляция, она же ШИМ. Изменяя время (ширину) импульса за период мы изменяем выдаваемую мощность. На рисунке выше, показано два периода ШИМа. Каждый период имеет отношение площади импульса к площади всего периода 0.5, те половину времени периода контроллер выдает высокий уровень сигнала, другую половину низкий. Отношение времени высокого уровня сигнала к времени низкого называется скважностью. Красная линия на графике отражает результирующую мощность за единицу времени, по ней видно что при скважности 0.5 мощность также упала на половину (с 12 до 6 Вт). Хорошая новость состоит в том, что, ШИМ в контроллерах реализован аппаратно. Так что для регулирования чего-то достаточно его запустить и, по необходимости, изменять скважность.

Для постоянного тока, режим ШИМа оптимален, причем чем более инерционный прибор мы к нему подключаем, тем меньшую частоту ШИМа можно использовать. Для большого ТЭНа достаточно чуть ли не одного герца, а вот для светодиодов лучше использовать частоту побольше. Кстати частота ШИМа в подсветке экрана ноутбука, зачастую оказывается чуть ли не решающим фактором при покупке, так как, при слишком низкой частоте, глаза будут быстро уставать.

Если попробовать провернуть трюк с ШИМом для переменного напряжения, мы увидим что все сломалось и мощность перестала регулироваться линейно

одинаковые промежутки времени стали давать нам разную площадь, а значит разную мощность. Однако, если разбить полученные отрезки на на ещё более мелкие, то процентное соотношение ширины импульса к ширине кусочка будет выравниваться.

Если мы возьмем равный процент выдаваемой мощности от каждого кусочка, в результате мы получим такой же процент, от мощности всей волны, а на выходе мы получим линейный регулятор мощности для переменного тока. Причем чем большую частоту будет иметь ШИМа, тем на большее количество кусочков он разобьет синусоиду, а значит мы получим большую линейность.

Это было бы решением всех проблем, но в моем случае устройством коммутировавшим нагрузку был не быстрый транзистор, а симистор — медленный прибор, с максимальными рабочими частотами в пределах нескольких сотен герц, к тому же симистор можно только открыть, закроется он сам при переходе через ноль. На таких частотах управлять переменным напряжением которое имеет частоту 50 Гц, линейно не получится. Поэтому здесь нужно использовать какой-то другой подход и как раз для него, помимо симисторов, была установлена схема перехода через ноль.

В случае с симисторами лучше разбить синусоиду на куски с одинаковыми площадями и записать время каждого такого кусочка в таблицу. Тогда каждое последующее значение из таблицы будет линейно увеличивать мощность.

На графике выше полуволна синусоиды разбита на части разные по времени, но имеющие одинаковую площадь, а значит несущие в себе одинаковую мощность. Все что нам останется сделать это загрузить таблицу с временными интервалам в наш котроллер, синхронизировать какой-то из его таймеров с частотой синусоиды, для этого используется схема перехода через ноль, и просто брать из таблички нужное значение, в течении которого будет высокий уровень. Суть метода похожа на ШИМ, но немного доработанный и синхронизированный с источником переменного напряжения.

Расчёт таблицы мощности

Теперь можно перейти непосредственно к расчёту.

Изначально задача заключается в том чтобы разбить синусоиду на нужное нам количество кусочков, каждый из которых будет иметь одинаковую площадь. На этом моменте, обычно проступает холодный пот, так-как площадь под графиком это и есть геометрическое определение интеграла. Соответственно нам нужно будет взять интеграл от функции при этом определить такие пределы интегрирования, которые будут давать одинаковый результат. Затем (как будто расчёта интегралов мало!) полученные пределы нужно будет перевести во время задержки (время в течении которого будет сохранятся высокий уровень). После чего полученное время перевести в понятное для контроллера число — количество тиков таймера. Звучит страшно, а по факту сейчас разберёмся:

Читайте так же:
Зазоры регулировок зазоров клапанов даф 95

Во первых сама функция — как было написано выше мощность это произведение тока на напряжение, для переменного тока (без сдвига фаз), это утверждение также верно, но, так-как и ток и напряжение меняются со временем P=IU превращается в P=I*sin(t) * U*sin(t). Так как амплитуда синусоиды нас сильно не волнует, уравнение вырождается до P=sin^2(t).

Неопределённый интеграл от квадрата синуса

Теперь нужно подобрать пределы для определенных интегралов. Выберем, насколько частей мы хотим разбить нашу синусоиду: я выбрал сто, чтобы можно было регулировать мощность с шагом в 1%.

Итак мы нашли чему будет равен неопределённый интеграл и даже выбрали шаг. Теперь нужно подобрать пределы интегрирования. Смысл их подбора заключается в том, чтобы значение определенного интеграла было постоянным при их смене. Напомню, что неопределенный интеграл это формула, а определённый вполне конкретное число. Определённый интеграл считается по формуле:

То есть мы берем неопределённый интеграл, подставляем в него верхнее число, затем нижнее, и вычитаем второе из первого.

Наш неопределённый интеграл является смешанной тригонометрической функцией, а значит не имеет общего аналитического решения. Чаще всего такие функции решаются либо числовыми, либо графическими методами. Графический метода заключается в том что мы строим графики для правой и левой части уравнения их пересечение будет решением уравнения. На рисунке показано решение уравнения для 0.2

Наряду с графическим методом можно использовать численный, то есть подбор решения. Будем подставлять в неопределённый интеграл числа до тех пор пока не найдём решение). Можно использовать лист и бумажку чтобы попрактиковаться в математике, можно онлайн калькулятор, я же буду использовать Python и библиотеки numpy:

Отлично мы получили массив чисел (пределов интегрирования!), валидность этих чисел можно проверить подставив их в интеграл. В результате должна получится площадь равная выбранному шагу! Теперь, если подставить полученные числа на график мощности, должна получится следующая картина:

Если все сошлось, то можно двигаться дальше и задать получившимся числам размерность времени, потому что сейчас они в радианах. Чтобы это сделать нужно выяснить угловую скорость, для частоты сети, то есть количество радиан в секунду.

Тогда узнаем сколько сколько длится одна радиана

Теперь, значения задержек в радианах, превратим во время, умножив каждое значение на период радианы (T). Проверим ход своей мысли: действительно-ли получится время задержки, если умножить задержку, на период? Задержка имеет размерность радиан, период — секунд за радиану, мы хотим их перемножить. Тогда рад * ( сек / рад ) = сек. Мы получили время, а значит ход мыслей должен быть верным.

Для расчётов я опять предпочту python:

На этом моменте мы получили универсальную таблицу задержек, теперь необходимо конвертировать её специально под микроконтроллер.

Расчёт таймера МК и перевод таблицы

Время необходимо перевести в понятную для МК величину — количество переполнений таймера. Но сначала необходимо определится с частотой таймера: чем выше частота, тем точнее он будет отмерять время, но с другой стороны, тем меньше времени будет оставаться на выполнение остальной программы. Здесь необходимо найти золотую середину.

Для определения минимально допустимой частоты таймера, надо найти числа в массиве с минимальной разностью между ними. Разность тем меньше, чем ближе в максимуму синусоиды мы двигаемся. Тогда возьмем задержку при которой синусоида достигает единицы и число перед ним, после чего найдем их разность:

5 мс — 4.9363 мс = 0.0636 мс

Получившееся число является максимально допустимым периодом между прерываниями таймера, тогда через него найдём минимально допустимую частоту

1 / 0.0636 = 15 КГц

Значит для заданной точности в 1% будет достаточно таймера с частотой 15КГц. Частота МК составляет 16 МГц, значит между прерываниями будет 1000 тактов процессора, этого достаточно для выполнения остальной части программы, так что можно смело настраивать таймер на заданную частоту.

Для настройки таймера на определенную частоту, не кратную тактирующей используется режим таймера CTC — Clear Timer on Compare. В этом режиме таймер досчитывает до заданного числа и сбрасывается, после чего операция повторяется. Число при котором будет происходить совпадение считается по формуле

Число = Тактовая частота МК / предделитель таймера / выбранная частота

Частота выбрана, теперь нужно перевести таблицу в тики таймера. Делать я это буду опять на Python

В общем-то на этом весь расчёт окончен, остается только отзеркалить получившийся массив для второй половины полуволны и загрузить в МК. Далее по прерыванию от синхроимпульса, нужно подать низкий уровень, на ножку управления симистором, запустить таймер и считать его переполнения (совпадения, тк. у нас режим CTC). Как только количество переполнений достигнет нужного числа из таблички, подаем высокий уровень на управляющую ножку. На этом линейный регулятор мощности переменного напряжения готов!

Заключение

Надеюсь статья была понятна и её было интересно читать. В дополнение хотелось бы сказать, сигнал перехода через ноль не приходит идеально вовремя, поэтому может потребоваться дополнительная коррекция, чтобы это исправить.

Код расчетов на python

Также, если кому-то будет интересно, могу поделится исходником готового регулятора для ардуино.

Учебное пособие по режиму приоритета

В режиме приоритета напряжения для управления выводом используется цепь обратной связи с постоянным напряжением, которая позволяет заданное значение напряжения, пока ток нагрузки находится в заданных пределах положительного или отрицательного значения тока. Режим приоритета напряжения наилучшим образом подходит при использовании резистивной или высокоимпедансной нагрузки, а также нагрузки, восприимчивой к выбросам напряжения. Не используйте режим приоритета напряжения с низкоимпедансными источниками, например батарейками, источниками питания или зарядными конденсаторами большой емкости.

В режиме приоритета напряжения необходимо установить нужное значение выходного напряжения. Также следует установить предельное значение положительного и отрицательного тока. Установленное предельное значение тока должно быть больше фактически требуемого выходного тока внешней нагрузки. На рисунке ниже показан годограф применения приоритета напряжения на выходе. В белых квадрантах выходной сигнал показан как источник (повышение мощности). В затемненных квадрантах выходной сигнал показан как нагрузка (понижение мощности).

Толстой сплошной линией показано местоположение возможных рабочих точек в виде функции нагрузки выходного сигнала. Горизонтальная часть линии показывает, что выходное напряжение не изменяется и остается на заданном уровне, пока ток нагрузки находится в диапазоне допустимых значений для положительного и отрицательного тока. Флаг состояния CV (постоянное напряжение) обозначает, что выходное напряжение регулируется, а выходной ток находится в установленных пределах допустимого диапазона значений.

Читайте так же:
Ключ для регулировки помпы на ланосе

Когда выходной ток достигает предельного положительного или отрицательного значения, режим стабилизации напряжения отключается и выходное напряжение больше не поддерживается на установленном уровне. С этого момента источник питания начинает регулировать выходной ток и предельные значения тока. При достижении предельного значения тока устанавливается флаг состояния LIM+ (предельное положительное значение тока) или LIM– (предельное отрицательное значение тока). Для обозначения этих условий на лицевой панели используются метки CL+ или CL-.

Вертикальный отрезок линии нагрузки обозначает, что выходное напряжение может продолжать увеличиваться в положительном направлении или уменьшаться в отрицательном направлении, пока ток подается или выводится из устройства. Если выходное напряжение превышает значение, установленное для защиты от перегрузки по напряжению, вывод прекращается, выходные реле размыкаются и на устройстве устанавливается состояние OV (перегрузка по напряжению).

Приоритет тока

В режиме приоритета тока для управления выводом используется цепь обратной связи с биполярным постоянным током, которая позволяет поддерживать ток источника или втекающий ток на запрограммированном уровне. Выходная сила тока будет поддерживаться на запрограммированном значении, пока напряжение нагрузки будет находиться в пределах допустимых значений напряжения. Режим приоритета тока наилучшим образом подходит для использования с батарейками, источниками питания, зарядными конденсаторами большой емкости и нагрузками, восприимчивыми к выбросам тока. Он позволяет минимизировать выбросы тока во время событий программирования, включения и выключения, а также плавные переходы между положительными и отрицательными значениями тока.

В режиме приоритета тока необходимо установить нужное положительное или отрицательное значение выходного тока. Также необходимо установить предельное положительное значение напряжения. Установленное предельное значение напряжения должно быть больше фактически требуемого выходного напряжения внешней нагрузки. На рисунке ниже показан годограф в режиме приоритета тока на выходе. В белых квадрантах выходной сигнал показан как источник (повышение мощности). В затемненных квадрантах выходной сигнал показан как нагрузка (понижение мощности).

Толстой сплошной линией показано местоположение возможных рабочих точек в виде функции нагрузки выходного сигнала. Вертикальная часть линии показывает, что выходной ток не изменяется и остается на заданном уровне, пока выходное напряжение находится в диапазоне допустимых значений. Флаг состояния CC (постоянный ток) обозначает, что выходной ток регулируется, а выходное напряжение находится в установленных пределах допустимого диапазона значений.

Когда выходное напряжение достигает предельного значения, режим постоянного тока отключается и выходной ток больше не поддерживается на установленном уровне. С этого момента источник питания начинает регулировать выходное напряжение и предельные его значения. При достижении предельного значения напряжения отображается флаг состояния LIM+ (предельное положительное напряжение). На лицевой панели это условие обозначается меткой VL+.

Горизонтальный отрезок линии нагрузки показывает, что когда устройство потребляет мощность, выходной ток может продолжать увеличиваться в отрицательном направлении, поскольку ток будет течь в устройство. Это может произойти, если в качестве нагрузки используются батарейки или другие источники питания, выходное напряжение которых выше установленного предельного значения напряжения для источника питания. Когда ток превышает установленное предельное отрицательное значение перегрузки по току, вывод прекращается, выходные реле размыкаются и устанавливаются биты состояния OC (перегрузка по току). В этом случае во избежание такого защитного отключения важно правильно установить предельное значение напряжения.

Преимущества и недостатки аппаратов переменного тока для сварки

Во всех электрических сварочных аппаратах используется кабель массы и держателя/горелки. Один конец является плюсом, а второй — минусом. При замыкании контактов и удержании их на расстоянии 3-5 мм, образуется электрическая дуга, которой выполняется плавление кромок основного металла. При этом подается дополнительный присадочный металл для заполнения ширины шва:

работа

Но в сварочных агрегатах, генерирующих постоянный и переменный ток, внутри происходят разные физические процессы, определяющие характеристики сварочной дуги. Природа тока при этом тоже отличается.

Что такое полярность?

Говоря о постоянном токе, стоит упомянуть о полярности. Полярность — это направление движения отрицательно заряженных частиц. В физике они всегда движутся от клеммы минуса к клемме плюса. У переменного тока такой четко заданной направленности нет.

В сварочных аппаратах, работающих на постоянном токе, сварщик может выбрать, в какое гнездо установить разъем держателя (горелки), а в какой кабель массы. Поскольку электроны всегда движутся от минуса к плюсу, в каждом случае сварочный ток получит определенные свойства.

При прямой полярности (держатель на минус, а масса на плюс) отрицательно заряженные частицы перемещаются от держателя к изделию. Это содействует:

Прямая полярность актуальна для сварки толстых сталей.

Обратная полярность подразумевает подключение держателя к плюсу, а кабеля массы к минусу. Это запускает электроны в обратном порядке — тепло концентрируется не на изделии, а на кончике электрода, снижая тепловложение на изделии. Обратная полярность применяется при сварке тонких листов железа, чтобы избежать прожогов. Но использование обратной полярности ведет к перегреву кончика электрода и его ускоренному плавлению.

Какие аппараты какой ток вырабатывают

Теперь рассмотрим, какие сварочные аппараты вырабатывают переменный или постоянный сварочный ток.

Именно трансформаторы вырабатывают переменный ток для сварки. Для этого в их конструкции используется две обмотки — первичная и вторичная. Они наматываются на стальной сердечник, который значительно утяжеляет массу аппарата. Переменный ток из бытовой сети 220 V или трехфазной 380 V поступает на первичную обмотку. За счет большого количества витков возникает электромагнитное поле с концентрацией на сердечнике. На вторичную обмотку подается уже сниженное напряжение около 70-90 V и увеличенная сила тока до 160-300 А, в зависимости от количества витков обмотки трансформатора.

Трансформаторы используются только для РДС сварки покрытыми электродами. В зависимости от мощности сварочного тока определяется толщина проплавляемого металла.

Сварочные выпрямители содержат внутри две обмотки трансформатора, но дополнены блоком выпрямления, преобразовывающим переменный ток в постоянный. Чаще всего преобразователи рассчитаны на сеть 380 V, чтобы равномерно нагружать фазы питания.

Выпрямители используются на производствах и в мастерских, где требуется качественный провар толстых металлов 5-20 мм. Но за счет массивной конструкции занимают много места. Часто комплектуются колесами для перемещения по цеху. Чтобы подать их на высоту, предусмотрены петли под крюк крана или тельфера.

Инверторы бывают на 220 и 380 V. У них входящий переменный ток с частотой 50 Гц выпрямляется и сглаживается при помощи фильтра. Затем ток возвращается снова в переменный, но его частота значительно возрастает и составляет 20-50 кГц. Есть модели, способные вывести частоту до 100 кГц. После этого ток снова преобразовывается в постоянный и фильтруется.

Читайте так же:
Регулировка фар додж интрепид

Такой процесс обеспечивает чрезвычайно ровный ток, содействующий стабильному горению дуги и высокому качеству шва. Инверторные аппараты применяются при сварке ММА, MIG, TIG. Благодаря компактности внутренних узлов некоторые инверторы весят всего 3-4 кг. Большинство бытовых моделей для РДС не превышает по массе 10 кг. Но есть и промышленные версии с силой тока 400-500 А и весом 30-50 кг.

Большинство инверторных аппаратов работают только с постоянным током, но есть профессиональные версии AC/DC, способные переключаться на переменный ток. Это расширяет их возможности применения.

Трансформатор КаВик ТДМ-252 AL

Выпрямитель ЭСВА ВС-300Б

Инвертор БАРСВЕЛД Profi TIG-217

Разница между сваркой переменным и постоянным током

Понимая отличия переменного и постоянного тока, а также особенности сварочных аппаратов, вырабатывающие их, рассмотрим разницу в сварке.

Дуга на переменном токе горит менее стабильно, возможно случайное затухание при небольшом изменении зазора между электродом и изделием. Присутствует характерный треск. Манипулировать дугой сложнее, порой она «гуляет», труднее задавать форму шва.

При сварке на переменном токе присутствует разбрызгивание металла, дуга «плюется». Электроды на переменном токе расходуются быстрее. Во время выполнения потолочных и вертикальных швов перенос присадочного металла осложняется, некоторая его часть скапывает под действием силы тяжести вниз.

Но сварочные аппараты, работающие на переменном токе, стоят дешевле выпрямителей и инверторов. У них простейшая конструкция и внутренние узлы, которые легко переносят суровые условия на стройке, в гараже, цеху. Ломаться здесь практически нечему — может только сгореть обмотка от перегрева. Если не перегревать трансформатор, то он будет служить долгие годы.

Аппараты не боятся пыли, а регулировка силы тока осуществляется приближением или отдалением первичной обмотки от вторичной. Все элементы простые и надежные, оборудование имеет повышенную ремонтопригодность с низкой стоимостью комплектующих.

Сварка на постоянном токе отличается стабильной дугой, шов вести легче, контролируя чешуйчатость, ширину и высоту валика. Дуга не трещит, а шелестит. Жидкий металл разбрызгивается меньше, капля лучше переносится на изделие. Постоянный ток более удобен для сварки не только в нижнем, но и в вертикальном и в потолочном положении.

Когда входящее напряжение «скачет», аппараты с постоянным током теряют только силу рабочего тока, но дуга остается стабильной. Качество шва уже не зависит на 100% от опытности сварщика, а обеспечивается лучшими характеристиками сварочного тока.

Но инверторы стоят дороже, чем трансформаторы. У них более сложное внутреннее оснащение и дорогостоящий ремонт. Инверторные сварочные аппараты чувствительны к пыли и ударам, тряске. При использовании на стройке или в цеху следует быть осторожным, а также регулярно продувать внутренние схемы от пыли.

Области применения

Исходя из этого сравнения работы аппаратов с переменным и постоянным током можно сделать вывод, что трансформатор подойдет для периодической сварки неответственных конструкций из малоуглеродистых сталей. Желательно, чтобы сварка велась в нижнем положении. При этом у сварщика должна быть определенная квалификация, иначе швы будут очень плохими. Трансформатор «выживет» в строительных условиях, частых транспортировках, запыленных помещениях. Это оптимальный варит для дачи, гаража, чтобы сэкономить.

Источник видео: Виталий М

Но трансформаторы с переменным током могут пригодиться и для профессиональных задач. Например, при сварке покрытыми электродами алюминия или ржавого металла, который невозможно очистить. Они лучше инверторов, поскольку постоянное изменение направления движения электронов содействует разрушению оксида алюминия или загрязнений на поверхности. Постоянный ток на такое не способен (только в сочетании с импульсом)

Инверторы лучше подойдут для новичков, чтобы учиться варить. С ними легче работать во всех пространственных положениях, а также сваривать:

Изменение полярности поможет сварить тонкий металл 1-2 мм без прожогов. Но за инверторами требуется более тщательный уход и бережное обращение, иначе частые поломки дорого обойдутся.

Для профессиональной деятельности или частной мастерской лучше купить сварочные аппараты AC/DC. Переключаясь с переменного на постоянный ток, вы сможете качественно варить любые металлы и наслаждаться приятным шелестом электрической дуги.

Советы по выбору

Выбирая сварочный аппарат переменного тока, обращайте внимание на следующие характеристики:

Не забудьте про качественную маску для сварки, чтобы хорошо видеть сварочную ванну и защитить при этом глаза. Чтобы швы были прочные даже на переменном токе, важны хорошие электроды. Лучше выбирайте с рутиловым или основным покрытием. Они отлично плавятся и содействуют переносу капли металла. Никогда не покупайте для «переменки» электроды с целлюлозным покрытием.

Толщина металла, ммДиаметр электрода, ммСила тока, А
1-2225-100
3-4390-150
5-64150-200

Ответы на вопросы: преимущества и недостатки аппаратов переменного тока для сварки

Регулировка силы тока возможна двумя способами. Первый — плавный, путем вращения рукоятки на корпусе. Она сводит и разводит катушки первичной и вторичной обмотки между собой, от чего изменяется электромагнитное поле. Если нужно убавить ток — вращайте ручку против часовой стрелки. Для добавления силы тока, крутите ручку по часовой стрелке.

Второй способ — ступенчатый. Он есть только у промышленных версий и заключается в переключении витков обмотки. Механизм действует быстро, но не позволяет установить точных значений. У большинства трансформаторов нет дисплея, поэтому дугу нужно пробовать на черновом металле каждый раз после изменения настроек.

Переменный и постоянный ток

Использование двух родов тока в системе тягового электроснабжения железных дорог сложилось исторически. Все дело в том, что на заре электрификации на ЭПС использовались тяговые электродвигатели (ТЭД) исключительно постоянного тока. Это связано с их конструктивными особенностями, возможностью достаточно простыми средствами регулировать скорость и вращающий момент в широких пределах, возможностью работать с перегрузкой и т.д. Говоря техническим языком, электромеханические характеристики двигателей постоянного тока идеально подходят для целей тяги. Двигатели же переменного тока (асинхронные, синхронные) имеют такие характеристики, что без специальных средств регулирования их применение для электротяги становится невозможным. Таких средств регулирования на начальном этапе электрификации еще небыло и поэтому, естественно, в системах тягового электроснабжения применялся постоянный ток при напряжении сначала 1500, а затем 3000 В, или как принято говорить у электриков, 1,5 или 3 кВ. Строились тяговые подстанции, назначением которых является понижение переменного напряжения питающей сети до необходимого значения, и его выпрямление, т.е. преобразование в постоянное. Но шли годы, объемы перевозок на железной дороге увеличивались, соответственно расла нагрузка тяговых сетей. Мощность равна произведению тока на напряжение. Расли нагрузки, расли и потери в тяговой сети. Ведь потери пропорциональны квадрату тока, или. А это приводило к необходимости усиления тяговой сети, т.е. строились дополнительные тяговые подстанции, увеличивалось сечение проводов. Но все это радикально не решало проблемы. Выход был один — это уменьшить величину тока, но при той же мощности наргузки это можно сделать только поднимая величину напряжения. А тут возникла серьезная проблема: для двигателей постоянного тока напряжение 3 кВ оказалось практически предельным. Это связано с его конструкцией, наличием коллектора и щеток, вращающейся обмотки якоря. При повышении напряжения, надежность работы этих узлов значительно снизилась. Двигатели же переменного тока для тяги в то время были совершенно непригодны. Таким образом, возникло противоречие — для системы электроснабжения напряжение 3 кВ оказалось мало, а для ТЭД повышать его было невозможно. Но выход был найден с помощью перехода на переменный ток! В системе переменного тока на ЭПС стали устанавливать трансформаторы, которые позволяют, как известно, достаточно просто изменять величину напряжения, являются простыми и надежными. После трансформатора устанавливается выпрямитель, а дальше — ТЭД постоянного тока. При этом напряжение на ТЭД можно значительно понизить, тем самым повысив их надежность, а напряжение тяговой сети повысить, уменьшив потери в ней. Так было и сделано. Напряжение тяговой сети переменного тока повысили до 25 кВ, на шинах тяговой подстанции 27,5 кВ. При этом увеличилось расстояние между тяговыми подстанциями, уменьшилось сечение проводов тяговой сети, а следовательно, и стоимость системы электроснабжения. На начальном этапе внедрения переменного тока снова возникли проблемы. Дело в том, что выпрямительная техника того времени была несовершенна. Для выпрямления переменного тока использовались ртутные выпрямители. А это достаточно сложные, дорогие и капризные агрегаты даже при работе в стационарных условиях, не говоря уже об их установке на ЭПС. Это еще несколько задержало внедрение переменного тока. С появлением полупроводниковых выпрямителей эта проблема тоже решилась. Пока шло становление системы переменного тока, система постоянного тока бурно внедрялась на сети железных дорог. Когда все проблемы по переменному току удалось решить, значительная часть дорог оказалась уже электрифицирована на постоянном токе. Таким образом, система электрификации переменного тока является более совершенной и в настоящее время принята основной. По нормам проектирования постоянный ток должен применяться для завершения электрификации направлений, ранее электрифицированных на этом токе и для электрификации участков, примыкающих к таким направлениям. Кроме того, в настоящее время разработана система тягового электроснабжения переменного тока 2х25 кВ. При этом напряжение питающей сети увеличено до 50 кВ, а напряжение в контактной сети сохранилось прежним 25 кВ. По этой системе электрифицирована Байкало-Амурская магистраль и ряд участков в центре России. В местах стыкования систем постоянного и переменного тока устраиваются станции стыкования, где происходит смена локомотивов переменного и постоянного тока. Кроме того, существуют электровозы двойного питания, на переменный и постоянный ток, но в нашей стране они имеют ограниченное применение. Развитие полупроводниковой и микропроцессорной техники позволило снять ограничения на применение на ЭПС двигателей переменного тока. Эти двигатели, особенно асинхронные, являются простыми и надежными. В настоящее время выпущены электровозы и электропоезда с двигателями переменного тока, ведутся дальнейшие исследования в этом направлении. А как переходы с одного на другой ток на граничных участках работают? посредством тепловозов? Нет. Контактная сеть на станции стыкования может переключаться на любой род тока — полностью или по частям. При этом электровоз, например, постоянного тока подходит к станции, ему подают в КС постоянный ток, он притаскивает состав на заданный путь (если пассажирский — то к платформе), отцепляется, уходит на свою стоянку (где только постоянный ток), после этого ток в КС переключается на переменный, со своего места вылезает электровоз-переменник и прицепляется к оставленному составу. Ещё существуют двухсистемные электровозы, которым всё равно под каким родом тока ехать. Но они довольно дорогие и их мало — грузовые (а фактически грузопассажирские) ВЛ82 и ВЛ82М в Выборге и Минеральных Водах и пассажирский ЭП10 (пока в единственном экземпляре) в Москве-Курской (работает с поездом 061/062 «Буревестник» Москва — Нижний Новгород, но периодически уезжает на очередные испытания). Особенная конструкция в Минеральных Водах — хотя там от линии переменного тока отходит ветка, электрифицированная постоянным током, на станции нет переключаемых секций КС. Главные пути электрифицированы на переменном токе, а поезда на Кисловодск уходят со своих путей, где только постоянный ток. Сквозные поезда с главного хода в Кисловодск (их немного) ходят только под двухсистемными электровозами; электровозов постоянного тока в МинВодах нет.

Читайте так же:
Регулировка сварочного тока по вторичке тиристорами
ПРЕИМУЩЕСТВА ПОСТОЯННОГО ТОКА:

Во-первых подвижной состав в полтора раза дешевле. Во-вторых удельный расход у ЭР2 на холмистом профиле, типичном для московской области порядка 20-21 Вт, у ЭР9 — где-то в районе 28-30. Что касается второго пункта, то не забывайте, что вам придется учитывать также и стоимость электровозов электропоездов, которая у машин переменного тока существенно (на 30-50 процентов) выше. Отсюда несложно сделать вывод, что чем больше размеры движения по участку, чем больше убытки от использования переменного тока. Необходимые же расчеты можете сделать самостоятельно. Стоимость электрификации 100 км переменным током на однопутной линии при 2 подстанциях и одностороннем питании будет 65-70 млн долл.,постоянным током при расстоянии между подстанциями в 20 км — порядка 80 млн долл. при таких затаратах на капстроительство текучкой можно смело пренебречь, а цена подвижного состава вам известна — 3,5 млн долл ЭД9, 2,2 млн долл — ЭД4М, 1,4 млн долл — ЭП1. Расчетную цену за электровоз постоянного тока можно взять 1 млн. долл — столько стоит коллекторная машина у Бомбардье. Если использовать асинхронники, то разница в цене достигнет 2 млн долл.за машину. Официальные цифры на 80-е годы показывали , что на участках переменного тока удельный расход на 6-15 процентов выше(не по показаниям счетчиков машин, а именно по ТП). Вкратце — в основном из-за потерь в выпрямительной установке электровоза. Причем потери эти настолько велики — у Вл60 больше трети теряется, что даже система постоянки 1,65 кВ в этом смысле эффективнее переменки 2*25 Кв. ответ: Вы бы ещё электромашинные преобразователи вспомнили. ВЛ60, разработанный фактически в середине 50-х, имеет совершенно доисторические ртутные выпрямители с водяным охлаждением. Впрочем, на тяговых подстанциях линий постоянного тока стояли аналогичные выпрямители. ОБЩЕИЗВЕСТНО, и занесено в учебники со схемами и графиками потребления электроэнергии, что расход электроэнергии на постоянном токе ВСЕГДА меньше при равных условиях.Что и послужило причиной его сохранения как единственной системы на обычных линиях, например в НИдерландах, несмотря на напряжение 1,65 кВ. Что касается цифр, то даже группа безумных сторонников переменки во ВНИИЖТе, травившая ртутью машинистов, в конечном итоге вынуждена была признать как минимум шестипроцентный перерасход электроэнергии на единицу работы при переменном токе. И то — это при сравнении самого эффективного переменника с ВЛ8 при неучете возврата электроэнергии в сеть на постоянке. Реальные же цифры в зависимости от конкретных условий -10-15 процентов. Что и подтвердил недавний перевод участка Лоухи -Мурманиск на переменку. Несмотря на громогласные утверждения тех же придурков, что в свое время поработали с внедрением ртути, что вот мол сейчас все увидят, как эффективен переменный ток. И что получилось? Несмотря на более полное использование мощности локомотива при переменке, что должно было привести к уменьшению удельного расхода электроэнергии, все произошло с точностью до наоборот — расход увеличился, эксплуатационные расходы выросли — в общем история не учит только этих самых. у ВЛ80 потери также достаточно велики. В том же учебники вы прчитаете — расход ээнергии у электровозов переменного тока существенно выше, но у них выше скорость, что дает несравнимое преимущество. Но на практике этого то преимущества у них и нет. Сами знаете, какие на РЖД участковые скорости у грузовых. Значит смысла в электрификации переменным током немного?- мысл в увеличении скорости и не только — мощность 4 осного переменника такая же как у 6-осного постоянника. По системам тока — полигон постоянки и переменки на обычных линиях в ЗапЕвропе примерно одинаков. Ресурс электровозов постоянного тока в значительной мере выработан, электропоездов там почти нет, расходы при переходе с постоянного на переменный ток невелики и делается это быстро. Ну взяли бы голландцы, итальянцы, бельгийцы и перешли бы на переменный ток. Ан нет, Итальянские дороги заказали огромную партию НОВЫХ постоянников -почти 300 штук, что им мешало перейти на переменку, а заодно бы и локомотивный парк сменился бы . Нет, они упорно эксперементируют с постоянным током повышенного напряжения. в России не собираются переводить все участки на переменный ток.

Читайте так же:
Регулировка клапанов курсор 10 схема
Что перевели на переменный ток?

Участок Зима — Слюдянка. Но ведь он уникален, там самый сложный профиль, чем где бы то ни было. Из-за уклона до 19 тыс. потребляемая мощность велика и это привело к тому, что расстояние между подстанциямив среднем на участке Иркутск — Слюдянка составляет 11 км, а кое-где 7 (. ) км. При этом площадь сечения проводов достигал 600 кв. мм. Контактная сеть усливалась третьими и даже четвртыми проводами, а количество тяговых подстанций увеличилось по сравнению с первым годом после электрификации в 2 раза. Подыскать в мире похожие примеры достаточно сложно и уж Италия и Бельгия здесь явно не пример. Увеличивать и дальше количество тяговых подстанций и сечение проводов стало невозможным. И это как раз наглядный пример сферы применения именно тяги переменного (повышенной мощности) тока. Так что информация о снижении расходов после перевода вполне правдоподобна. Причины перевода на переменный ток целого направления Мурманск — Кемь мне не известны. Указывается, что на момент перевода износ по системе электроснабжения составил 70%, необходима была замена всего трансформаторно — выпрямительного оборудования на тяговых подстанциях, замена опор, контактной сети и изоляторов. Решили, что лучше всё менять одновременно с вводом переменного тока. Профиль на этом участке мягче, чем на ВСЖД, поэтому, возможно, здесь и увеличился расход энергии. После Мурманск — Кемь хотели перевести на переменный ток и участок Данилов — Ярославль-Гл. — Александров, Ярославль — Кострома, но в последний момент от этой идеи отказались. Здесь проводится реконструкция системы электроснабжения с сохранением системы постоянного тока. Планами предусматривается замена системы тока лишь на двух участках: Мин. Воды — Кисловодск — здесь понятно почему: парк электровозов двойного питания изношен, заменить их нечем, а также с целью ликвидации короткого тягового плеча; Гор. Ключ — Кривенковская и Белоречеснкая — Адлер: тяжёлый профиль (хотя и почти нет грузового движения) и желание увеличить тяговые плечи. Постоянный ток преимущества перед переменным не имеет. По этой причине при новом строительстве линий (и при электрификации линий на автономной тяге) дают предпочтение переменномку току.

Преимущества переменной электротяги:

Уменьшение силы тока в КС за счет применения высокого напряжения 25кВ. Следствие — более длинные интервалы между тяговыми подстанциями и уменьшение количества самих подстанций. Любое необходимое напряжение на электровозе и электропоезде можно получить за счет трансформатора, который имеет кпд, близкий к 100% и очень высокую надежность. (при постоянном токе для этих целей используются электромашинные преобразователи (мотор-генераторы) или электронные статические преобразователи, которые дОроги и ненадежны. На переменном токе на электровоз можно передавать гораздо большую мощность, чем на постоянном. Отсюда и ограничение 200км/ч для скоростных поездов на постоянном токе. КС переменного тока можно использовать, как резервное питание для устройств СЦБ. На постоянном токе кроме основной ВСЛСЦБ на опоры КС еще вешают ВЛПЭ. На переменном токе проще погасить электрическую дугу, которая возникает при проходе секционных изоляторов, при пробое воздушных промежутков (молниезащита), при переключениях мачтовых разъединителей, поскольку дуга может сама погаснуть при переходе фазы через нулевое значение, причем вне зависимости от наличия в цепи реактивных сопротивлений. (На постоянном токе наличие реактивных сопротивлений только усугубляет ситуацию с дугогашением). Проще конструкция тяговых подстанций. Нетрудно догадаться, что один мощный выпрямитель гораздо ненадежнее, чем выпрямитель на порядок меньшей мощности на каждом электровозе/мотор-вагоне. Есть еще ряд мелких преимуществ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector