Personalcam.ru

Авто Аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Использование усилителя с АРУ как мягкого ограничителя уровня сигналов

Использование усилителя с АРУ как мягкого ограничителя уровня сигналов

Вебинар «Новые решения STMicroelectronics в области спутниковой навигации» (17.11.2021)

Предлагаемый усилитель с автоматической регулировкой усиления (АРУ) может использоваться для «мягкого» и с минимальными искажениями ограничения уровня сигнала относительно его пикового значения. Последнее важно подчеркнуть: управление усилением происходит не по среднеквадратичному значению сигнала, а именно по абсолютному. Это бывает необходимо для некоторых систем обработки речи, систем связи и т. д.

Обычные усилители с АРУ в таких приложениях работать корректно не могут и, кроме того, имеют довольно высокие уровни общих гармонических искажений. Поскольку опираются они на среднеквадратичный уровень сигнала и, следовательно, имеют задержку реакции АРУ, такие усилители часто отличаются еще одной весьма неприятной особенностью, которую можно назвать «временное замирание сигнала» или «схлопывание». Этот эффект проявляется в усилителе с АРУ, когда схема регулировки усиления начинает работать в режиме захвата, то есть, когда управление сигналом по обратной связи АРУ «включено». Это присущее таким усилителям свойство, которое проявляется в мгновенном снижении уровня сигнала с его последующим медленным нарастанием до точки регулирования передаточной характеристики.

Кроме того, используемые обычно простые усилители с АРУ по разному реагируют на положительные и отрицательные полуволны сигнала, поскольку, как правило, используют однополупериодный выпрямитель. Иногда это может быть недопустимо, например, если строго задан уровень модуляции, или если недопустима перегрузка АЦП. Указанные негативные эффекты должны быть исключены, в особенности в тех системах, которые предназначены для передачи или обработки речи, где первостепенное значение имеет речевая разборчивость. Принципиальная схема «мягкого» ограничителя сигналов без перечисленных выше недостатков представлена на Рисунке 1.

Рисунок 1.Мягкий ограничитель уровня сигнала.

Устройство состоит из регулируемого аттенюатора (R4, RDS_VТ1), усилителя (DA1-1), прецизионного двухполупериодного выпрямителя (DA1-2, DA1-3) и порогового элемента управления (VT2) с емкостным интегратором (R7, C4). (RDS_VТ1 – сопротивление канала VT1). Входной сигнал поступает на усилитель через регулируемый аттенюатор. В отличие от обычных устройств, этот аттенюатор необходимо настроить таким образом, чтобы входной сигнал сразу был ослаблен примерно на 1 дБ. Это должно быть выполнено при отключенной обратной связи по АРУ. Регулировка производится подстроечным резистором R6. Последнее исключительно важно, поскольку именно эта настройка полностью устраняет вредный эффект, названный выше как «временное замирание сигнала».

В предлагаемом устройстве в качестве регулирующего звена АРУ используется p-канальный полевой транзистор (VT1) с большим напряжением отсечки (VGS_OFF) и с подходящим сопротивлением канала в открытом состоянии (RDS_ON). Оптимальным будет транзистор с VGS_OFF в пределах от 3 до 7 В и RDS_ON порядка 400 — 200 Ом.

Выбор типа регулирующего транзистора весьма важен, так как он влияет на снижение эффекта «временного замирания сигнала».

Сопротивление канала транзистора VT1 в открытом состоянии (RDS_ON) вместе с номинальным значением резистора R4 определяет максимальный динамический диапазон устройства в части глубины регулировки АРУ. Вычислить этот диапазон можно по формуле

Причиной высоких общих гармонических искажений обычных усилителей с АРУ являются большие нелинейные искажения, вносимые регулируемым аттенюатором. Снизить эти искажения можно с помощью специальной дополнительной RC-цепочки (C3, R13, R14), то есть путем введения в регулирующий элемент VT1 отрицательной обратной связи по затвору. Вторая проблема (реакция на амплитуду любого знака) решается путем использования схемы прецизионного двухполупериодного выпрямителя.

Важным элементом цепи управления является транзистор VT2, изменяющий напряжение на затворе транзистора VT1 в соответствии с абсолютным уровнем входного сигнала. При снижении напряжения на затворе VT1 уменьшается его сопротивление, что, соответственно, уменьшает коэффициент передачи аттенюатора. Таким образом, уровень выходного сигнала схемы не будет превышать установленного значения тех пор, пока напряжение на затворе транзистора VT1 не станет равным нулю. В этом случае транзистор VT1 будет полностью открыт.

Разборчивость речи зависит от постоянной время интегратора (R7, С4), которая может быть подобрана экспериментально. Приемлемыми для речевого сигнала значениями будут R7 = 330 кОм и C4 = 10 мкФ. Подстроечным резистором R12 устанавливается необходимое максимальное значение амплитуды выходного сигнала. Подчеркнем еще раз, что схема не работает со среднеквадратичными значениями! Естественно, что максимальная амплитуда выходного сигнала не может быть меньше, чем порог включения VT2, для слаботочных кремниевых транзисторов равный примерно 0.68 В. Именно до этого значения амплитуды усилитель ведет себя как обычный линейный, а затем меняет свой коэффициент передачи, фиксируя максимальную амплитуду сигнала на новом уровне, после чего опять работает линейно без компрессии до восстановления интегратора и нового захвата. Необходимый уровень входного сигнала может быть установлен выбором соответствующего коэффициента усиления DA1–1, который можно рассчитать по формуле

Читайте так же:
Как отрегулировать ближний свет фар на ланосе

Естественно, что это справедливо только в рабочей полосе частот.

Описанное устройство имеет очень малое время отклика, составляющее менее половины периода входного сигнала.

Выводы

Основные особенности мягкого ограничителя:

  • Прецизионный двухполупериодный выпрямитель;
  • Пороговый элемент управления с интегратором;
  • P-канальный полевой транзистор в качестве управляющего элемента аттенюатора (VT1) должен выбираться с высоким напряжением отсечки (VGS_OFF);
  • Предварительная установка рабочей точки управляющего транзистора аттенюатора (VT1);
  • Введение в регулирующий элемент аттенюатора отрицательной обратной связи, минимизирующей нелинейные искажения.

Впервые это устройство использовалось автором в качестве ограничителя модуляции в одном из его персональных проектов. Здесь было необходимо обеспечить условие, чтобы амплитуда сигнала (в любой промежуток времени и любой полярности) не превысила строго заданный уровень. Это требование должно было выполняться в широком динамическом диапазоне входных сигналов, при низком уровне общих гармонических искажений и без заметного искажения артикуляции. Таким образом, использование известных схем ограничения было невозможным. Автором было проверено много технических решений, в результате чего выяснилось, что проект, представленный на Рисунке 1 – наилучший.

Это же решение автор использовал в составе музыкальной системы в качестве автоматического микшера ди-джея. В этом варианте на вход устройства через сумматор подавались два сигнала (музыка и голос), но их общий уровень автоматически поддерживался постоянным. Так, уровень музыкального сигнала без ручного микширования автоматически уменьшался, как только ди-джей начинал говорить, и плавно возвращался на заданный прежний уровень, если ди-джей замолкал. При этом отсутствовала перегрузка усилителей и акустических систем. Эта же идея использовалась и в качестве базы для прецизионного генератора синусоидальных сигналов на основе моста Вина. Результаты использования такого решения были превосходны и превзошли все ожидания.

Примечание редакции

Эта публикация может считаться дополнением к изданной нами ранее статье «Практика использования ИМС усилителей с АРУ серии SSM21xx» (РадиоЛоцман, 2014, май, июнь), в которой был описан усилитель с АРУ по среднеквадратичному значению сигнала.

Уменьшение нелинейных искажений основанного на полевом транзисторе регулирующего звена аттенюатора за счет введения отрицательной обратной связи описывается, например, в книге: Титце У., Шенк К. «Полупроводниковая схемотехника» 12-е изд.: Пер. с нем. – М., ДМК Пресс, 2007.

Описание использованного в рассмотренной схеме двухполупериодного выпрямителя можно найти в книге: Л. Фолкенберри «Применение операционных усилителей и линейных ИС», Пер. с англ. – М.: Мир, 1985. Обе книги имеются в Интернете и доступны для скачивания. В таком выпрямителе для повышения точности на малых сигналах лучше использовать диоды Шоттки, например, BAS40-04, но для рассматриваемой схемы это несущественно.

Значение сопротивления канала в открытом состоянии RDS_ON для маломощных полевых транзисторов не всегда приводится в спецификациях, но его легко вычислить через крутизну (S) транзистора, так RDS_ON = 1/S. Кстати, в схеме можно использовать отечественный полевой транзистор КП103М1: S = (1.3…4.4) мА/В, VGS_OFF = (2.8…7) В.

Если максимальная амплитуда выходного сигнала должна быть меньше указанного в статье значения 0.68 В, то следует изменить коэффициент усиления в двухполупериодном выпрямителе. Необходимое усиление устанавливается увеличением номиналов резисторов R11 и R3 относительно номиналов остальных резисторов выпрямителя. Для правильной работы выпрямителя не забывайте соблюдать соотношения номиналов резисторов R11 = R3, R5 = R1 = R2. При этом коэффициент усиления выпрямителя рассчитывается как KU = R3/R5.

Понятие автоматической регулировки усиления

Первое, что мы узнаем, войдя в мир электроники, – это как разработать схему на операционном усилителе с заданным коэффициентом усиления. Это не особенно сложно, и даже после того, как мы познакомимся со всеми нюансами и недостатками, связанными со схемами усилителей, мы всё еще можем уверенно проектировать системы, для которых требуется выходной сигнал, равный входному сигналу, умноженному на фиксированный коэффициент усиления.

Читайте так же:
Как отрегулировать тнвд на зилу бычке

Но что происходит, когда вся эта парадигма разваливается? Что мы можем сделать, если фиксированным параметром является не коэффициент усиления, а величина выходного сигнала? Фиксированный коэффициент усиления может создавать постоянную амплитуду выходного сигнала, когда амплитуда входного сигнала известна и неизменна, но это не всегда так, и, кроме того, иногда амплитуда входного сигнала сильно изменяется.

Замыкание петли

Решением здесь является то, что называется автоматической регулировкой усиления, сокращенно АРУ (англ. AGC, automatic gain control). Мы можем интуитивно сделать вывод, что в системе с разомкнутой петлей фактически нет способа достичь этого – чтобы правильно регулировать усиление, схема усилителя должна знать амплитуду сигнала на выходе. Следовательно, АРУ требует обратной связи. Она также (и неудивительно) требует усилителя с переменным коэффициентом усиления (VGA, variable gain amplifier).

Ниже приведена (очень) базовая архитектура системы АРУ.

Рисунок 1 Структурная схема усилителя с системой АРУ Рисунок 1 – Структурная схема усилителя с системой АРУ

Выходной сигнал усилителя с переменным коэффициентом усиления (VGA) подается не только на следующее устройство в тракте сигнала, но также и на измерительную схему, которая определяет амплитуду выходного сигнала и регулирует усиление соответствующим образом. Измерение амплитуды выполняется детекторным блоком, для чего используется различные типы детекторов – четыре стандартных типа: детектор огибающей (или выпрямитель), квадратичный, среднеквадратичный (СКЗ, RMS) и логарифмический.

Адаптация к изменениям

Как и другие системы обратной связи, АРУ может «захватывать» входной сигнал, поэтому постепенные изменения амплитуды на входе будут иметь минимальное влияние на выходной сигнал. Однако АРУ не может мгновенно адаптироваться к быстрым изменениям; на самом деле, чрезвычайно быстрое время отклика нежелательно, потому что это сделает систему АРУ чрезмерно чувствительной к шуму или преднамеренным изменениям амплитуды входного сигнала (то есть амплитудной модуляции).

Термин «время срабатывания» (в англоязычной литературе «attack time», «время атаки») относится к реакции схемы АРУ на увеличение амплитуды входного сигнала, а «время восстановления» (в англоязычной литературе «decay time», «время затухания») относится к ее реакции на уменьшение амплитуды входного сигнала. На следующем графике от Analog Devices сравниваются характеристики срабатывания и восстановления для четырех стандартных типов детекторов.

Рисунок 2 Характеристики срабатывания и восстановления АРУ для четырех стандартных типов детекторов Рисунок 2 – Характеристики срабатывания и восстановления АРУ для четырех стандартных типов детекторов

Как видите, при выборе типа детектора необходимо принять во внимание требования к отклику системы.

АРУ для радиочастотного приемника

АРУ является критическим аспектом конструкции радиочастотного приемника. Плотность энергии электромагнитного излучения уменьшается пропорционально квадрату расстояния. Таким образом, уровень радиочастотного сигнала в приемнике резко меняется в зависимости от того насколько близко приемник находится к передатчику. АРУ постоянно обеспечивает усиления принимаемого сигнала до уровня, обеспечивающего эффективную обработку схемой демодулятора.

В наш век высокоинтегрированных, профессионально разработанных, широкодоступных микросхем аналоговых и смешанных сигналов маловероятно, что вам когда-либо понадобится (или вы захотите) разработать собственную систему АРУ (что является не простым процессом). Тем не менее, хорошо бы знать и понимать основные приемы и концепции.

Автоматическая регулировка усиления на операционном усилителе

Усилители на микросхемах

В радиоэлектронике широкое применение нашли операционные усилители. Операционный усилитель имеет два входа и один выход. У него большое входное сопротивление, малое выходное сопротивление, большой коэффициент усиления постоянного напряжения.


Рис. 1

Рис. 2

У идеального операционного усилителя входное сопротивление равно бесконечности, выходное сопротивление равно нулю, коэффициент усиления бесконечно велик, выходное напряжение равно нулю при одинаковых напряжениях на обоих входах.
Операционные усилители питаются от двух одинаковых источников напряжения, имеющих общую точку. Один из входов операционного усилителя называется инвертирующим, а другой – неинвертирующим. Фаза сигнала на выходе усилителя совпадает с фазой сигнала на неинвертирующем входе и противоположна фазе сигнала на инвертирующем входе.

На рисунке 1 приведена схема неинвертирующего усилителя на микросхеме К140УД7. На рисунке показаны цепи подключения источников питания. Резистором R5 устраняется напряжение смещения нуля. Коэффициент усиления усилителя с глубокой отрицательной обратной связью определяется звеном отрицательной обратной связи на резисторах R2, R3 и R4. Коэффициент усиления по напряжению можно определить по формуле К=(R2+R3+R4)/R2. Полоса пропускания усилителя зависит от коэффициента усиления и достигает максимального значения 50 кГц при минимальном для данной схемы коэффициенте усиления. Минимальный коэффициент усиления получается при сопротивлении резистора R4 равном нулю. На рисунке 2 приведена схема неинвертирующего усилителя на микросхеме К140УД1А. Коэффициент усиления усилителя определяется звеном обратной связи R2, R4 и равен К=(R2+R4)/R2. Резисторы R3 и R5 необходимы для устранения напряжения смещения нуля. Конденсатор С1 и резистор R6 корректируют амплитудно-частотную характеристику усилителя.

Читайте так же:
Глонасс устройство временной синхронизации


Рис. 3

5 мА. Коэффициент усиления по напряжению

В схемах на рис. 3 и 4 усиление напряжения производится операционным усилителем А1, а транзисторы используются для согласования высокого выходного сопротивления микросхемы с низким сопротивлением звуковой катушки громкоговорителя. Настройка данной схемы сводится к подбору при помощи R3 и R4 нужного коэффициента усиления.
Данная схема имеет коэффициент усиления около 130 при выходной мощности 200 милливатт. Величина сопротивления резисторов R1, R2 может быть от 100 до 200 килоом, но она должна быть одинаковой. В качестве транзисторов можно использовать практически любую комплементарную пару, но обязательно — либо оба кремниевые, либо оба — германиевые. В качестве примера можно рекомендовать применение транзисторов типов КТ315+КТ361; КТ3107+КТ3102; МП38+МП41. Этот усилитель можно собрать на плате с размерами 20Х30 мм.

Изменяя глубину ООС, легко регулировать коэффициент усиления ОУ. Это позволяет конструировать УНЧ с довольно глубокой АРУ по звуковому сигналу, что может быть полезно как в приемной части трансивера, так и в микрофонном усилителе. Схема УНЧ приемника с АРУ приведена на рис. 5,а. Первый каскад, собранный на малошумящем транзисторе VI, усиливает сигнал и задает смещение ( + 6 В) на неинвертирующий вход ОУ. К инвертирующему входу подключен делитель обратной связи, составленный из резистора R6 и сопротивления канала полевого транзистора V3. Цепочка стандартной коррекции R5C3 предотвращает самовозбуждение ОУ при введении ООС. Конденсатор С4 увеличивает ООС на высоких частотах и тем самым ограничивает полосу пропускания сверху. Нижние частоты ослабляются благодаря сравнительно небольшой емкости разделительно¬го конденсатора С5. При понижении частоты его емкостное сопротивление возрастает, опять увеличивая ООС и снижая усиление. Выходной каскад собран по схеме двухтактного эмиттерного повторителя на транзисторах различной проводимости V4,V5.
Сигнал с выхода усили¬теля подается на разъем телефонов XI и на выпрямитель, собранный по схеме с удвоением напряжения на диодах V6,V7. Благодаря использованию кремниевых диодов с пороговым напряжением 0,5 В АРУ приобретает пороговые свойства и начинает действовать лишь при выходном напряжении более 1 В.


Рис. 5. УНЧ на операционном усилителе с АРУ:
a — схема; б — амплитудная характеристика

Выпрямленное напряжение отрицательной полярности приложено к затвору регулирующего транзистора V3. При возрастании выходного сигнала этот транзистор запирается, отчего возрастает глубина ООС и усиление ОУ падает. Резисторно-диодная цепочка R4V2 уменьшает нелинейные искажения при сильном сигнале.
У изготовленного образца УНЧ полоса пропускания при малом сигнале составила 400 Гц. 5 кГц с максиму¬мом усиления на частотах около 2 кГц. Уровень шума, приведенный ко входу, не превосходил 0,5 мкВ. По мере возрастания уровня сигнала полоса пропускания расширяется, что несущественно, поскольку при этом отно-сительный уровень шума падает. Коэффициент усиления при малом сигнале превосходит 100 дБ (105 по напряжению). Амплитудная характеристика УНЧ показана на рис. 5,б. АРУ начинает работать при входном сигнале около 10 мкВ. Когда входной сигнал превосходит 10 мВ, регулирующий транзистор V3 запирается полностью, а усиление ОУ становится близким к единице. Поскольку дальнейшее регулирование невозможно, снова наблюдается рост выходного сигнала. Таким образом, диапазон регулирования составляет около 60 дБ. Полный же диа¬пазон входных сигналов УНЧ (от уровня шумов до на¬чала ограничения сигнала) достигает 90 дБ.


Рис. 6

Принципиальная схема еще одного линейного усилителя приведена на рис. 6. Он собран на операционном усилителе К1УТ401А. При данных деталях, указанных на схеме, диапазон рабочих частот устройства — от 10 Гц до 70 кГц на уровне — 6 дБ и от 27 Гц до 20 кГц на уровне — 1 дБ. Входное сопротивление усилителя, определяемое в данном случае сопротивлением параллельно соединенных резисторов делителя напряжения R1R2, равно 100 кОм, коэффициент усиления — около 100, напряжение шумов на выходе (при коротком замыкании на входе) не превышает 6—7 мкВ.
Верхняя граница диапазона рабочих частот зависит от емкости конденсатора СЗ, нижняя — от емкости конденсатора С2. Цепочка R5C4 служит для устранения самовозбуждения усилителя на высоких частотах. Для этого же предназначен и керамический конденсатор С5, припаиваемый при монтаже непосредственно к выводам 1 и 7 операционного усилителя MC1. При необходимости коэффициент усиления устройства можно изменить, увеличивая сопротивление резистора R3 (уменьшать его нельзя, так как в этом случае для сохранения нижней границы рабочего диапазона частот потребуется резкое увеличение емкости конденсатора С2 или изменяя сопротивление резистора R4. Вместо последнего можно включить частотно-корректирующую цепь, необходимо лишь помнить, что ее сопротивление постоянному току не должно превышать 1 МОм.

Читайте так же:
Как самому отрегулировать карбюратор бензопилы партнер 350

На рис.7 приведена принципиальная схема низкочастотного усилителя с выходной мощностью около 6 Вт на нагрузке 3 Ом. Неравномерность амплитудно-частотной характеристики в диапазоне частот от 20 Гц до 20 кГц не превышает 2 дБ. Максимальная чувствительность усилителя 200 мВ.


Рис. 7. Схема усилителя НЧ с выходной мощностью до 6 Вт

Автоматическая регулировка усиления на операционном усилителе

В приемниках малой сложности применяется простая АРУ, которая обеспечивает изменение уровня сигнала на выходе РЧ около 6 дБ при изменении не более 26 дБ на его входе. В такой схеме построения АРУ исключается усилитель и детектор. А чтобы уменьшить ее влияние на коэффициент нелинейных искажений в некоторых приемниках малой сложности применяют регулировку рабочей точки детектора.

В приемниках высокой сложности применяют более продвинутые цепи АРУ, а именно – комбинированные. В таких цепях реализованы задержка уровня срабатывания и усиление управляющего напряжения. Здесь автоматической регулировкой усиления могут быть охвачены каскады УРЧ, преобразователи частот (ПЧ), первые каскады УПЧ, где небольшие уровни сигналов, на которые мало влияет изменение режимов транзисторов. При этом следует учитывать, что охват АРУ в перечисленных выше каскадах должен осуществляться таким образом, чтобы не было перегрузок последующих каскадов, а также происходило увеличение сигнал-шум. Все это достигается при правильно рассчитанной АРУ. Например, если крутизна регулирования в каскаде УРЧ будет больше, чем в УПЧ, то в итоге с полезным сигналом будут усиливаться и помехи частотно-преобразовательного каскада. А при большой крутизне регулирования в УПЧ возможно некоторое ограничение сигнала в УРЧ. Поэтому для получения высокого качества вещания приемных устройств, нужно правильно распределить усиление по всему радиотракту.

Рассмотрим принцип работы АРУ на основе вещательного приемника «Сокол-308». Сокол-308

Как мы видим, напряжение АРУ положительной полярности снимается с выхода диода VD4 и через фильтр звуковых частот, реализованный на R9C7, подается сначала на диод VD2, а затем на базу VT2. Основное назначение этого транзистора – усиление сигнала промежуточной частоты, второстепенное – это усиление напряжения АРУ. Причем транзистор VT2 усиливает его так, что падение напряжения на R7 значительно уменьшается, что приводит к открыванию диода VD1, включенного по переменному току параллельно ФПЧ в цепи коллектора VT1. Динамическое сопротивление VD1 уменьшается, уменьшается и резонансное сопротивление ФПЧ на L1C2, что приводит и к уменьшению усиления в частотно-преобразовательном каскаде. Эффективность такой АРУ составляет порядка 40 дБ.

На следующем (рис. 3) показан каскад, выполненный по схеме двух транзисторов (с общим коллектором и общей базой). АРУДифференциальное включение VT1 и VT2 позволяет добиться эффективного регулирования по постоянному току. Для того чтобы VT2 надежно закрылся, нужно обеспечить разность напряжения между базами транзисторов порядка 200 мВ. Такой каскад достаточно прост в повторении и не требует огромного количества деталей. А в цепях эмиттера используются блокировочные конденсаторы малой емкости, что позволяет применить такую схему в качестве основного элемента для микросхем 174ХА10 и 174ХА2.

Не менее эффективным способом регулирования АРУ является применение в схемах линейных и нелинейных делителей напряжения, которые управляются током или напряжением. Рассмотрим схему диодного делителя напряжения в схеме АРУ, которая применяется в УРЧ приемника «Виктория-Стерео-001» (рис. 4).

При максимальном усилении сигнала VD1 закрыт, а VD1 открыт. Малое динамическое сопротивление VD2 в цепи эмиттера создает неглубокую отрицательную обратную связь по току. При увеличении напряжения АРУ VD1 открывается и шунтирует катушку связи с входным контуром. При этом добротность контура уменьшается, вызывая соответственно и уменьшение уровня входного сигнала. АРУ_sokolПри этом возрастает динамическое сопротивление VD2, а также глубина отрицательной обратной связи в УРЧ, что значительным образом помогает осуществлять неискаженное усиление возросшего сигнала при уменьшенном коэффициенте передачи.
Существует еще один вариант управляемых делителей напряжения, которым может служить УРЧ микросхемы 174ХА2 (рис.5). На этой схеме диоды VD2 и VD5 используются в качестве элементов связи между транзисторами VT2 и VT5. Транзисторы VT1, VT3 и VT5 смещены в прямом направлении при отсутствии управляющего напряжения на входе УПТ. Другие диоды VD1 и VD4 закрыты и поэтому не шунтируют резисторы R2 и R8. При таком состоянии усиление УРЧ максимально. Когда к базе транзистора VT1 поступает положительное напряжение АРУ относительно общего провода, транзистор закрывается, на его эмиттере растет напряжение, что приводит к открыванию транзистора VT3. Это, в свою очередь, приводит к падению напряжения на его коллекторе, поэтому диоды VD2 и VD5 закрываются, их динамическое сопротивление начинает увеличиваться, а коэффициент передачи между эмиттером VT2 и эмиттером VT5 уменьшается.
Дальше открываются VT4 и диоды VD1, VD3, VD4, шунтирующие выход УРЧ, при этом уменьшая коэффициент усиления. Глубина регулирования получается очень большой даже на высоких частотах коротковолнового диапазона (40дБ).

Читайте так же:
Как регулировать зажигание на таврии

АРУ_174ХА2Наиболее эффективной АРУ с микросхемой 174ХА2 достигается при двухкольцевой цепи АРУ. При таком способе напряжение на входы УПТ, УРЧ, УПЧ подается от разных детекторов. На вход детектора АРУ первого кольца поступает напряжение с выхода смесителя частот, и регулировка в УРЧ происходит при Uвх≥500 мкВ. А регулировочное напряжение для УПЧ получают с детектора, который является общим для выходного сигнала и цепей АРУ. Одним из достоинств двухкольцевых цепей АРУ является то, что они позволяют повысить максимальное отношение сигнал-шум, а также спасают от перегрузок радиотракта при значительных уровнях входных сигналов. С сигнала, лежащего в полосе пропускания УРЧ и ФПЧ, снимается напряжение на вход детектора первого кольца. При этом сигнал ослабляется до такого уровня, который необходим для нормальной работы последующих каскадов. Следует заметить, что при этом ослабляется и полезный принимаемый сигнал, поэтому в цепях АРУ первого кольца нужно установить порог ее срабатывания при перегрузочных уровнях сигнала, а в УРЧ применить активные элементы, которые будут усиливать сигнал без искажения, например, оптрон на основе фоторезистора. Его сопротивление не будет зависеть от величины подводимого к нему напряжения, а только под воздействием светового потока.

Рассмотрим схему управляемого делителя на оптроне (рис. 6). Здесь фоторезистор, который по максиму освещен светодиодом, имеет малое сопротивление в цепи сигнала, который снимается с катушки связи с входным контуром. Когда срабатывает детектор-компаратор первого кольца АРУ, происходит уменьшение тока через светодиод, вследствие чего, увеличивается сопротивление фоторезистора и происходит уменьшение уровня сигнала на входе УРЧ. оптрон

Вариант выполнения простого детектора-компаратора показан на рис. 7, который изготовлен на операционном усилителе К140УД5А. Такая схема обладает довольно приличной чувствительностью, так как для получения полного выходного напряжения противоположного знака, на вход достаточно подать 5…7 мВ. Это решает проблему установки порога срабатывания в 100 мВ с погрешностью 10 %. Чтобы получить на выходе схемы сигнал с обратной зависимостью от входного сигнала, на операционном усилителе DA1 нужно поменять местами выводы 8 и 11.

Достоинство такой схемы детектора-компаратора состоит в том, что он отлично сочетается с двухзатворными полевыми транзисторами, высокая точность установки и поддержания заданного уровня сигнала на выходе. При применении данной схемы с двухзатворными полевыми транзисторами в каскадах УРЧ, транзистор VT1 исключается из схемы, и выходное напряжение будет сниматься с выхода операционного усилителя.

Данный детектор-компаратор работает в широком диапазоне частот вплоть до УКВ частот. Если данную схему применять наряду с микросхемой 174ХА2, то на выходе операционного усилителя DA1 требуется включить делитель напряжения из R4 и дополнительного резистора 1…2 кОм, и питание для DA1 требуется положительной полярности. на К140УД5А

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector