Personalcam.ru

Авто Аксессуары
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель с короткозамкнутым ротором регулировка скорости

Асинхронный двигатель с короткозамкнутым ротором регулировка скорости

Главная Электродвигатели Асинхронные электродвигатели Регулирование скорости вращения асинхронных электродвигателей

Из уравнения механической характеристики (97) вытекает, что регулирование скорости вращения асинхронных электро­двигателей можно осуществить:

изменением частоты питающего тока;

изменением числа «ар полюсов обмотки статора;

введением дополнительных сопротивлений в цепь обмотки ротора.

Первые два способа используются для регулирования скоро­сти вращения электродвигателей с короткозамкнутым ротором, а последний — электродвигателей с фазным ротором (с кон­тактными кольцами).

Регулирование скорости вращения изменением частоты пи­тающего тока используется очень редко, так как этот способ применим лишь в случае, когда электродвигатель питается от отдельного генератора. В этом случае для регулирования скоро­сти необходимо менять скорость вращения питающего генератора в такой же пропорции, е какой должна меняться скорость регулируемого электродвигателя. Бели же электродвигатель пи­тается от сети трехфазного тока, то осуществить регулирование его скорости изменением частоты невозможно. На практике ре­гулирование скорости изменением частоты применяется лишь в. гребных электрических установках переменного тока, в кото­рых мощные гребные электродвигатели получают питание от отдельных генераторов и поэтому частоту питающего тока мож­но регулировать произвольно.

Наиболее часто на практике применяется второй способ, позволяющий достаточно просто осуществлять ступенчатое ре­гулирование скорости вращения асинхронных электродвигателей с короткозамкнутым ротором. Если имеется возможность из­менять число пар полюсов обмотки статора [см. формулу (80)] то, следовательно, имеется возможность ступенчатого регулиро­вания скорости вращения электродвигателя, так как число пар полюсов может быть равно 1, 2, 3 и т. д. Электродвигатели, до­пускающие переключение числа пар полюсов, должны иметь в пазах статора либо несколько независимых обмоток, либо од­ну обмотку со специальным переключающим устройством. Оте­чественная промышленность выпускает двух-, трех- и четырех- скороетные электродвигатели, используемые :в основном на морском транспорте и на некоторых кранах. Когда числа полю­сов значительно отличаются друг от друга, двух скор осиные электродвигатели изготовляются с двумя независимыми об­мотками. Одна, например, может быть выполнена на 2р = 2, а вторая на 2р = 8 полюсов. Тогда при подключении к сети пер­вой обмотки магнитное поле статора будет вращаться со скоростью n 1 = 60·50 / 1 = 3000 об /мин, а при подключении к сети второй обмотки — со скоростью n 1 = 60·50 / 4 = 750 об /мин. Соответствую­щим образом будет изменяться при этом и скорость вращения ротора n 2 = n 1 (1—s).

Часто в пазы статора двухскоростного электродвигателя закладывают одну обмотку, но выполняют ее так, чтобы мож­но было включать ее при необходимости треугольником (рис. 49, а) и двойной звездой (рис. 49, б). При включении такой обмотки треугольником число полюсов равно 2р = 2а, а при вклю­чении двойной звездой 2р = а (где а — любое целое число), т. е. при переходе от треугольника к двойной звезде число пар по­люсов статорной обмотки уменьшается вдвое, а скорость элек­тродвигателя возрастает вдвое.

Регулирование переключением числа пар полюсов применя­ется только для электродвигателя с короткозамкнутым рото­ром, потому что у электродвигателей с фазным ротором одно

временно с переключением обмотки статора требуется переклю­чать и обмотку ротора, что усложняет конструкцию электродви­гателя и переключающего устройства. Данный способ регули­рования скорости отличается высокой экономичностью, но он не лишен и недостатков. В частности, регулирование скорости происходит не плавно, а скачками, требуется довольно сложное переключающее устройство, в особенности при числе скоростей большем двух; при переходе с одной скорости на другую раз­рывается цепь статора, при этом неизбежны толчки тока и мо­мента, коэффициент мощности при низших скоростях ниже, чем при высших из-за увеличения рассеяния магнитного потока.

Регулирование скорости введением дополнительных сопро­тивлений в цепь ротора возможно только у электродвигателей с фазным ротором. Согласно уравнению (97), при введении раз­личных активных сопротивлений в цепь ротора жесткость ха­рактеристик изменяется (рис. 50), т. е. при одной и той же на­грузке скорость электродвигателя будет различной. Очевидно, чем выше величина дополнительного сопротивления, тем мягче искусственная характеристика и тем ниже скорость электродви­гателя.

Допустим электродвигатель работает с установившейся ско­ростью n 1 на естественной характеристике а в точке 1, развития некоторый вращающий момент М 1 = М c . При введении в цепь ротора некоторого сопротивления R 1 электродвигатель перей­дет на работу по характеристике b, уравнение которой

Так как в момент включения сопротивления скорость электро­двигателя практически не изменится, переход с характеристи­ки а на характеристи­ку b произойдет по гори­зонтали 12, причем вра­щающий момент электро­двигателя снизится до М 2 , который меньше мо­мента сопротивления ме­ханизма М , поэтому ско­рость электродвигателя будет падать, а скольже­ние возрастать. При воз­растании скольжения мо­мент, согласно выраже­нию (92), увеличивается до тех пор, пока момент электродвигателя вновь не станет равным момен­ту сопротивления ме­ханизма, после чего наступит равновесие моментов и двигатель будет вращаться с новой установившейся скоростью n 3 (точ­ка 3).

Читайте так же:
Регулировка карбюратора на 402 движке

При необходимости дополнительно может быть включено сопротивление R 2 . Тогда скорость электродвигателя снизится до величины n 5 . При отключении сопротивлений скорость элект­родвигателя будет возрастать, при этом переход с одной харак­теристики на другую происходит в обратном порядке, как по­казано на рис. 50.

Последний способ позволяет получить широкий диапазон скоростей, но является крайне неэкономичным, так как при увеличении активного сопротивления цепи ротора растут потери энергии в электродвигателе, а значит уменьшается его к. п. д. Сами регулировочные реостаты, особенно для мощных электро­двигателей, получаются громоздкими и выделяют много тепла.

Необходимо также иметь в виду, что большинство электро­двигателей в настоящее время выполняется с самовентиляцией.

Вследствие этого при понижении скорости вращения охлаж­дение ухудшается и электродвигатель не может развивать но­минальный вращающий момент.

Регулирование скорости (частоты вращения) асинхронного двигателя

Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.

Рассмотрим возможные способы регулирования скорости асинхронных двигателей (см. рис.1). Скорость двигателя определяется двумя параметрами: скоростью вращения электромагнитного поля статора ω 0 и скольжением s:

Рис.1. Классификация способов регулирования асинхронных двигателей

Исходя из (1) принципиально возможны два способа регулирования скорости: регулирование скорости вращения поля статора и регулирование скольжения при постоянной величине ω 0 .

Скорость вращения поля статора определяется двумя параметрами (см.3.3): частотой напряжения, подводимого к обмоткам статора f 1 , и числом пар полюсов двигателя р п . В соответствии с этим возможны два способа регулирования скорости: изменение частоты питающего напряжения посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя.

Регулирование скольжения двигателя при постоянной скорости вращения поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения величины напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных сопротивлений (реостатное регулирование) и введение в цепь ротора добавочной регулируемой э.д.с. посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).

В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты, что определило опережающее развитие и широкое применение частотно-регулируемого асинхронного электропривода. Основными достоинствами этой системы регулируемого электропривода являются:

— плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;

— экономичность регулирования, определяемая тем, что двигатель работает с малыми величинами абсолютного скольжения, и потери в двигателе не превышают номинальных.

Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты и сложность реализации в большинстве схем режима рекуперативного торможения.

Подробно принципы и схемы частотного регулирования скорости асинхронного двигателя рассмотрены ниже.

Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать несколько (от 2 до 4) значений рабочих скоростей, т.е. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно.

Поэтому данный способ имеет определенные области применения, но не может рассматриваться, как основа для построения систем регулируемого электропривода.

2. Частотное регулирование асинхронных электроприводов

Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения вытекает из формулы ω = 2π f 1 (1 — s)/p. При регулировании частоты также возникает необходимость регулирования амплитуды напряжения источника, что следует из выражения U 1 ≈ Е 1 = k Ф f 1 . Если при неизменном напряжении изменять частоту, то поток будет изменяться обратно пропорционально частоте. Так, при уменьшении частоты поток возрастет, и это приведет к насыщению стали машины и как следствие к резкому увеличению тока и превышению температуры двигателя; при увеличении частоты поток будет уменьшаться и как следствие будет уменьшаться допустимый момент.

Читайте так же:
Регулировка подачи воздуха карбюратора к 151

Для наилучшего использования асинхронного двигателя при регулировании угловой скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки, что реализуемо только в замкнутых системах электропривода. В разомкнутых системах напряжение регулируется лишь в функции частоты по некоторому закону, зависящему от вида нагрузки.

Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.

Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).

Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.

Для осуществления частотного регулирования угловой скорости находят применение преобразователи, на выходе которых по требуемому соотношению или независимо меняется как частота, так и амплитуда напряжения. Преобразователи частоты можно разделить на электромашинные и вентильные. В свою очередь электромашинные преобразователи могут быть выполнены с промежуточным звеном постоянного тока и непосредственной связью. В последних используют коллекторную машину переменного тока, на вход которой подают переменное напряжение с постоянной частотой и амплитудой, а на выходе ее получают напряжение с регулируемой частотой и амплитудой. Электромашинные преобразователи с непосредственной связью практического применения не получили.

3. Регулирование скорости, тока и момента с помощью резисторов в цепях ротора и статора

Один из распространенных способов регулирования скорости, тока и момента АД с фазным ротором связан с введением и изменением дополнительных резисторов в цепи его ротора. Схема, в которой реализуется этот способ регулирования, приведена на рис. 4.7, а. Основным достоинством этого способа является простота реализации, что определило его широкое применение в ряде электроприводов.

Для построения семейства получаемых при этом способе искусственных механических характеристик проведем анализ их характерных точек. С помощью выражения для скорости идеального холостого хода ω0 = ρf1/p отмечаем следующее:

1) скорость идеального холостого хода АД ω 0 при регулировании R д2 не изменяется;

2) максимальный (критический) момент двигателя Мк также остается неизменным;

3) критическое скольжение Sк увеличивается при увеличении R 2д .

Использование этих характеристик для регулирования скорости АД характеризуется такими же показателями, что и для ДПТ независимого возбуждения. Диапазон регулирования скорости небольшой — около 2 — 3, что определяется снижением жесткости характеристик и ростом потерь по мере увеличения диапазона регулирования скорости.

Плавность регулирования при реостатном регулировании небольшая и определяется плавностью изменения дополнительного резистора R2д. Скорость АД изменяется только вниз от основной.

Экономичность способа определяется стоимостью используемых средств регулирования и расходами при эксплуатации электропривода. Затраты, связанные с созданием данной системы электропривода, невелики, так как для регулирования обычно используются простые и дешевые ящики металлических резисторов. В то же время при эксплуатации этой системы затраты велики, поскольку значительны потери энергии.

Электрические потери в роторной цепи ΔР2, называемые потерями скольжения. Чем больше скольжение s, тем больше потери в роторной цепи, поэтому реализация большого диапазона регулирования скорости приводит к значительным потерям энергии и снижению КПД электропривода.

Регулирование скорости этим способом применяется в тех случаях, когда требуется небольшой диапазон регулирования скорости и работа на пониженных скоростях непродолжительна. Например, этот способ нашел широкое применение в электроприводе ряда подъемно-транспортных машин и механизмов.

Читайте так же:
Уравнительный ток при синхронизации

Рассматриваемый способ также используется для регулирования тока и момента АД при его пуске.

Если обратиться к характеристикам двигателя, то можно отметить, что за счет подбора сопротивления резистора пусковой момент АД может быть увеличен вплоть до значения критического момента Мк. Это свойство АД используется при его пуске с моментом нагрузки, превышающим пусковой момент АД Мп на естественной характеристике.

Пусковой ток АД уменьшается по мере увеличения R 2д , что позволяет с помощью введения добавочных резисторов осуществлять его ограничение.

Задача по расчету дополнительных резисторов в цепи ротора обычно формулируется следующим образом. Задана искусственная механическая характеристика АД (полностью или частично) или отдельная точка этой характеристики с координатами ω и , М и . Найти сопротивление дополнительного резистора R 2д , при включении которого в цепь ротора АД будет иметь заданную искусственную характеристику или же она будет проходить через заданную точку. При этом предполагается, что естественная механическая характеристика АД известна (рассчитана или снята экспериментально). Отметим, что требуемая искусственная характеристика может быть задана по условиям пуска или регулирования скорости.

Расчет сопротивления добавочного резистора R 2д может быть выполнен несколькими способами в зависимости от формы задания требуемой искусственной механической характеристики.

Электротехника и электрооборудование — Регулирование скорости вращения и реверсирование асинхронных электродвигателей

Регулирование скорости вращения асинхронных двигателей производят несколькими способами. Формула скорости вращения асинхронных двигателей:
(7.7) где s — скольжение в долях единицы показывает, что скорость вращения может регулироваться изменением частоты тока f, числа пар полюсов р и скольжения s.
Регулирование скорости вращения изменением величины скольжения асинхронного электродвигателя возможно двумя способами:

  1. введением в цепь ротора дополнительного сопротивления, что возможно для двигателей с фазным ротором;
  2. изменением реактивных сопротивлений (дросселей насыщения), включаемых в обмотку статора.

Регулирование скорости асинхронных электродвигателей с фазным ротором введением в его цепь дополнительного сопротивления позволяет уменьшать его скорость практически не более чем на 40—50% номинальной скорости.
При таком регулировании с увеличением сопротивления реостата увеличивается величина скольжения, т. е. уменьшается число оборотов двигателя. В этом случае схема регулирования сходна со схемой пуска асинхронного электродвигателя с фазным ротором (см. рис.7.8) с той разницей, что регулировочный реостат должен быть рассчитай на длительную нагрузку током. Регулирование скорости с помощью добавочного сопротивления в цепи ротора приводит к неустойчивой работе электродвигателя на малых оборотах, так как при этом приходится включать большие сопротивления, что приводит к значительным колебаниям скорости при небольших изменениях момента сопротивления нагрузки. Кроме того, этот способ мало экономичен, так как увеличивает потери в роторной цепи.
Описанный способ регулирования асинхронных электродвигателей с фазным ротором применяется в тех случаях, когда работа электродвигателя с пониженной скоростью непродолжительна и когда не требуется большой точности регулирования, например для регулирования скорости движения механизмов подъемно-транспортных установок.
Регулирование скорости асинхронных электродвигателей при помощи дросселей насыщения состоит в том, что в цепь статора электродвигателя включаются реактивные сопротивления с переменной индуктивностью. Изменение индуктивности реактивных сопротивлений (дросселей) осуществляется пропусканием постоянного тока различной величины через обмотку управления дросселями (рис. 7.13, а).
Изменяемое индуктивное сопротивление в цепи статора электродвигателя позволяет получать на зажимах машины различное напряжение (рис. 7.13, б), чем достигается изменение скольжения, т. е. скорости вращения ротора. Достоинством описанного способа является плавное регулирование скорости вращения электродвигателя; недостатками — значительное уменьшение максимального вращающего момента, а также уменьшение коэффициента мощности и к. п. д. электродвигателя.
Регулирование скорости вращения асинхронного электродвигателя за счет изменения числа пар полюсов осуществляется переключением обмотки статора и является ступенчатым. Для этих целей применяют специальные асинхронные многоскоростные электродвигатели, выпускаемые промышленностью и рассчитанные на 2, 3 и 4 скорости. Так, например, четырех скорости ой электродвигатель может иметь синхронные скорости вращения 500, 750, 1000 и 1500 об/мин.

Рис. 7.13. Схема включения и регулирования скорости асинхронных двигателей с короткозамкнутым ротором при помощи дросселей насыщения:
а — схема включения; б — механические характеристики

Рис. 7.14. Переключение проводов для изменения направления вращения асинхронного двигателя

Изменение числа пар полюсов достигают наиболее простым способом при устройстве двух независимых обмоток на статоре асинхронного электродвигателя. Такие электродвигатели выпускают с синхронными скоростями вращения 1000/1500 об/мин.
Двухскоростные электродвигатели имеют шесть, трехскоростные— девять и четырехскоростные — двенадцать выводов к переключателю полюсов.
Регулирование скорости вращения асинхронного электродвигателя изменением частоты тока требует применения специального источника переменного тока с изменяемой частотой. Этот способ еще не нашел применения для регулирования скорости электроприводов строительных машин, но является весьма перспективным при использовании для статических преобразователей частоты управляемых, полупроводниковых вентилей-тиристоров, производство которых в настоящее время развивается (о тиристорах см. гл. 10).
Изменение направления вращения асинхронного двигателя — реверсирование достигается изменением направления вращения магнитного
поля. Для этого достаточно переключить любые два провода трехфазной системы, подводящие ток к статору двигателя. На рис. 7.14 приведена схема такого переключения. При переключении трех проводов направление вращения магнитного поля статора, а следовательно, и ротора двигателя не изменится.

Читайте так же:
Ремонт бензопил хускварна и регулировка карбюратора

§ 7.9. Потери энергии и коэффициент полезного действия асинхронных электродвигателей. Коэффициент мощности двигателей

Электрическая энергия, расходуемая при работе асинхронного электродвигателя, затрачивается на полезную механическую работу и на покрытие потерь: электрических, магнитных и механических.
Потери в меди или электрические потери обусловлены нагреванием обмоток статора и ротора при протекании по ним тока. Потери в стали (магнитные потери) состоят из потерь на вихревые токи и на перемагничивание в стальных частях статора и ротора. Потери на вихревые токи пропорциональны квадрату частоты тока, а на перемагничивание — первой степени частоты тока. Магнитные потери главным образом происходят в статоре. Потери в стали ротора ничтожно малы вследствие малой частоты его тока и поэтому ими можно пренебрегать.
Механические потери состоят из расхода энергии на трение в подшипниках, трение ротора о воздух и воздуха в вентиляционной системе электродвигателя. Эти потери зависят от скорости вращения ротора, его диаметра, типа подшипников и конструкции вентиляционной системы двигателя.
Коэффициентом полезного действия (к. п. д.) двигателя называют отношение полезной механической мощности Р3 на валу двигателя к затраченной мощности, потребляемой из сети P1
(7-8)
Так как разница между затраченной и полезной мощностью равна потерям, то формулу получения к. п. д. двигателя можно записать в следующем виде:
(7.9)
где рм — потери в меди или электрические потери; рс — потери в стали или магнитные потери;
Рмех — механические потери.
Потери в меди являются переменными, зависящими от нагрузки, вследствие того что с увеличением тока увеличивается назревание обмоток.
Потери в стали (магнитные) и механические потери являются постоянными, так как не зависят от нагрузки.
Коэффициент полезного действия двигателя изменяется в зависимости от нагрузки.
Наибольшей величины к. п. д. достигает при нагрузке, равной примерно 0,75 номинальной, а затем с увеличением нагрузки к. п. д. уменьшается вследствие увеличения электрических потерь на нагревание обмоток (рис. 7.15, а).
Большое магнитное сопротивление воздушного зазора между статором и ротором асинхронного двигателя приводит к значительной величине намагничивающего (реактивного) тока, составляющего примерно 0,4—0,7 от номинальной силы тока электродвигателя. В связи с этим двигатель всегда работает с cos φ, меньшим единицы. При полной нагрузке коэффициент мощности cos φ двигателей достигает максимальной величины 0,8—0,9 (рис. 7.15, б).


Рис. 7.15. Зависимость коэффициента мощности асинхронного двигателя от его нагрузки

С уменьшением нагрузки коэффициент мощности снижается, что объясняется малой зависимостью от нагрузки намагничивающего (реактивного) тока. Сила тока двигателя складывается из двух величин: активного тока, зависящего от нагрузки, и реактивного тока, независимого от нагрузки. Поэтому при механической недогрузке активный ток уменьшается и, следовательно, увеличивается относительная величина реактивного тока, что приводит к снижению коэффициента мощности cos φ.

Эксплуатация электрических машин и аппаратуры — Регулировка скорости вращения асинхронных двигателей

Скорость вращения ротора асинхронного двигателя выражают формулой:

Как видно, скорость вращения ротора двигателя можно регулировать, изменяя одну из трех величин: частоту питающей сети, скольжение или число пар полюсов.

Регулируют скорость вращения, изменяя частоту в короткозамкнутых и фазных двигателях. При плавном изменении питающей частоты изменяется скорость вращения магнитного потока и скорость вращения ротора.

Скорость вращения регулируют введением активного сопротивления в цепь ротора фазного двигателя. В цепь ротора вводят сопротивление регулировочного реостата, аналогичного пусковому реостату, рассчитанному на длительное протекание токов ротора.
При увеличении сопротивления в роторной цепи уменьшается ток ротора. Момент двигателя становится меньше тормозного момента, скорость вращения ротора уменьшается. Скольжение возрастает, э. д. с. увеличивается, что вызывает рост роторного тока до прежнего значения, чтобы обусловленный им момент двигателя был равен тормозному моменту, но при меньшей скорости вращения. Характеристики на рисунке 39 иллюстрируют регулирование скорости вращения ротора фазного двигателя.
Плавность регулирования скорости вращения ротора двигателя зависит от числа ступеней реостата. Используя жидкостный реостат, можно плавно регулировать скорость вращения ротора.
Этот способ регулирования неэкономичен. С уменьшением скорости движения ротора двигателя увеличиваются электрические потери в роторной цепи (в реостате). Заметно возрастают и потери мощности в стали ротора. С уменьшением скорости вращения ротора полезная мощность снижается, а потребляемая мощность практически не изменяется, а к. п. д. сильно уменьшается. В режиме холостого хода или при малой нагрузке введение активного сопротивления в цепь ротора не влияет на скорость вращения ротора двигателя.

Рис. 39. Изменение скоростей вращения фазного двигателя регулировочным реостатом.

Читайте так же:
На карбюраторе всего 2 винта как отрегулировать

Регулирование скорости вращения ротора изменением числа пар полюсов применимо для короткозамкнутых двигателей. В них число полюсов ротора всегда равно числу полюсов статора. При регулировании таким способом фазных двигателей изменение числа полюсов статорной обмотки одновременно необходимо соответственно переключать роторную обмотку, что сильно осложняет контактную систему ротора.
Число полюсов можно изменять ступенчато. Скорость вращения ротора двигателя будет изменяться также ступенчато. Число полюсов двигателя изменяют так. В пазы статора укладывают две независимые обмотки на разное число полюсов или одну обмотку с переключением числа полюсов.
В двухобмоточных многоскоростных двигателях при работе на той или иной скорости используется одна обмотка, вторая бездействует.

Наличие двух обмоток увеличивает размеры двигателя, а работа одной из двух обмоток ухудшает использование активных материалов. Делая каждую из обмоток двухобмоточного двигателя с переключением числа пар полюсов, можно расширить диапазон регулирования скорости вращения ротора.
В однообмоточном многоскоростном двигателе полностью используют обмотку статора при работе на каждой из скоростей. Наиболее просто число полюсов обмотки переключать при отношении 1 : 2, что достигается изменением направления токов в полуфазах.
На рисунке 40,а показана развернутая двухслойная обмотка с переключением числа пар полюсов при отношении 1:2 : z = 18; т — 3; 2р = 2/4.

Рис. 40. Развернутая схема двухскоростной обмотки (а) и схемы соединения фаз при большем и меньшем числе полюсов (б),

Шаг двухскоростной обмотки принимают меньше полюсного деления при малом числе полюсов и больше или равным полюсному делению при большем числе полюсов. Число катушек в катушечной группе берут равным числу пазов на полюс и фазу при меньшем числе полюсов. На рисунке 40, а стрелками показано распределение токов по катушечным группам при большем и меньшем числе полюсов обмотки. На рисунке 40, б показаны схемы соединения фаз обмотки при 2р = 4 и 2р — 2, то есть использована схема переключения «треугольник — двойная звезда» (Δ//λλ); она допускает наименьшее (6) число выводных концов. Переброска двух проводов от питающей сети необходима для сохранения вращения ротора двигателя на одной и другой скоростях. Двухскоростной двигатель с шестью выводами можно переключать по схеме звезда — двойная звезда. Двухскоростные двигатели со схемами переключения относятся к двигателям с постоянным моментом, то есть по условиям нагрева двигатель способен развивать одинаковый момент на обеих скоростях вращения ротора.
Двухскоростной двигатель со схемой переключения обмотки «звезда — звезда» с девятью выводами относится к двигателям с постоянной мощностью, то есть по условиям нагрева двигатель способен развивать одинаковую мощность при двух скоростях вращения ротора.
С увеличением ступеней регулирования скорости вращения растет число выводов, что очень усложняет конструкцию переключающего устройства. Обычно больше чем на четыре скорости многоскоростные двигатели не выполняют. Эти двигатели в сравнении с обычными имеют ряд недостатков: большие габариты, высокая стоимость, низкие энергетические показатели (к. п. д. и cos φ), громоздкое многоконтактное переключающее устройство.

голоса
Рейтинг статьи
Ссылка на основную публикацию